Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T02:22:46.309Z Has data issue: false hasContentIssue false

Thin YBa2Cu3O7-δ patterns by Chemical Solution Processing using Ink-Jet Printing

Published online by Cambridge University Press:  17 May 2013

Jonas Feys
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium
Bram Ghekiere
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium
Petra Lommens
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium
Simon C. Hopkins
Affiliation:
ASCG, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK
Pieter Vermeir
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium Department of Industrial Sciences; University College Ghent; Ghent; Belgium
Michael Baecker
Affiliation:
Deutsche Nanoschicht GmbH, Rheinbach, Germany
Bartek A. Glowacki
Affiliation:
ASCG, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK Department of Physics and Energy, University of Limerick, Ireland Institute of Power Engineering, ul Augustowka 6, 02-981 Warsaw, Poland
Isabel Van Driessche
Affiliation:
SCRiPTS, Ghent University, Ghent, Belgium
Get access

Abstract

In this paper, we present ink-jet printing as an attractive alternative to lithography and etching methods for the development of multi-filamentary YBa2Cu3O7-δ coated conductors. Our research is mainly focused on the study of the influence of rheological parameters on the printability of water-based inks in order to produce superconducting patterns on SrTiO3 and CeO2-La2Zr2O7-Ni5at%W substrates. An aqueous YBCO precursor ink with a total metal ion concentration of 1.1 mol/L with a viscosity of 6.79 mPa s and a surface tension of 67.9 mN/m is developed. Its printing behavior using several ink-jet printing devices is verified using a camera with strobed illumination to quantify droplet velocity and volume. After optimization of the deposition parameters, YBCO tracks with different dimensions could be printed on both types of substrates. Their shape and dimensions were determined using optical microscopy and non-contact profilometry, showing 100-200 nm thick and 40-200 µm wide tracks. Finally, resistivity measurements were performed on the widest tracks on SrTiO3 showing a clear drop in the resistivity starting from 88.6 K with a ∆Tc of 1.4 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, W.; Rupich, M. W.; Schoop, U.; Verebelyi, D. T.; Thieme, C. L. H.; Li, X.; Kodenkandath, T.; Huang, Y.; Siegal, E.; Buczek, D.; Carter, W.; Nguyen, N.; Schreiber, J.; Prasova, M.; Lynch, J.; Tucker, D.; Fleshler, S., Physica C 2007, 463–465, 505509.CrossRefGoogle Scholar
Iijima, Y.; Kakimoto, K.; Sutoh, Y.; Ajimura, S.; Saitoh, T., Physica C 2004, 412–414, Part 2, 801806.CrossRefGoogle Scholar
Shiohara, Y.; Kitoh, Y.; Izumi, T., Physica C 2006, 445–448, 496503.CrossRefGoogle Scholar
Van Driessche, I.; Feys, J.; Hopkins, S. C.; Lommens, P.; Granados, X.; Glowacki, B. A.; Ricart, S.; Holzapfel, B.; Vilardell, M.; Kirchner, A.; Baecker, M., SUST 2012, 25 (6), 065017 (12p).Google Scholar
Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y. Y.; Martchevski, M.; Rar, A.; Qiao, Y.; Schmidt, R. M.; Knoll, A.; Lenseth, K. P.; Weber, C. S., IEEE Trans. Appl. Supercond. 2009, 19(3), 32253230.CrossRefGoogle Scholar
Iijima, Y.; Hosaka, M.; Sadakata, N.; Saitoh, T.; Kohno, O.; Takeda, K., Appl Phys Lett 1997, 71(18), 26952697.CrossRefGoogle Scholar
Cobb, C. B.; Barnes, P. N.; Haugan, T. J.; Tolliver, J.; Lee, E.; Sumption, M.; Collings, E.; Oberly, C. E., Physica C 2002, 382(1), 5256.CrossRefGoogle Scholar
Majoros, M.; Glowacki, B. A.; Campbell, A. M.; Levin, G. A.; Barnes, P. N.; Polak, M., IEEE Trans. Appl. Supercond. 2005, 15(2), 28192822.CrossRefGoogle Scholar
Sumption, M. D.; Coleman, E. L.; Cobb, C. B.; Barnes, P. N.; Haugan, T. J.; Tolliver, J.; Oberly, C. E.; Collings, E. W., IEEE Trans. Appl. Supercond. 2003, 13(2), 35533556.CrossRefGoogle Scholar
Carr, W. J.; Oberly, C. E., IEEE Trans. Appl. Supercond. 1999, 9(2), 14751478.CrossRefGoogle Scholar
Oberly, C. E.; Razidlo, B.; Rodriguez, F., IEEE Trans. Appl. Supercond. 2005, 15(2), 16431646.CrossRefGoogle Scholar
Amemiya, N.; Kasai, S.; Yoda, K.; Jiang, Z. N.; Levin, G. A.; Barnes, P. N.; Oberly, C. E., SUST 2004, 17(12), 14641471.Google Scholar
Oberly, C. E.; Long, L.; Rhoads, G. L.; Carr, W. J., Cryogenics 2001, 41(2), 117124.CrossRefGoogle Scholar
Tsukamoto, O.; Sekine, N.; Ciszek, M.; Ogawa, J., IEEE Trans. Appl. Supercond. 2005, 15(2), 28232826.CrossRefGoogle Scholar
Glowacki, B. A.; Majoros, M., SUST 2000, 13(7), 971973.Google Scholar
Sumption, M. D.; Barnes, P. N.; Collings, E. W., IEEE Trans. Appl. Supercond. 2005, 15(2), 28152818.CrossRefGoogle Scholar
Goldacker, W.; Frank, A.; Heller, R.; Schlachter, S. I.; Ringsdorf, B.; Weiss, K. P.; Schmidt, C.; Schuller, S., IEEE Trans. Appl. Supercond. 2007, 17(2), 33983401.CrossRefGoogle Scholar
Badcock, R. A.; Long, N. J.; Mulholland, M.; Hellmann, S.; Wright, A.; Hamilton, K. A., IEEE Trans. Appl. Supercond. 2009, 19(3), 32443247.CrossRefGoogle Scholar
Suzuki, K.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.; Iwakuma, M.; Ibi, A.; Miyata, S.; Yamada, Y., Physica C 2008, 468(15-20), 15791582.CrossRefGoogle Scholar
Sumption, M. D.; Collings, E. W.; Barnes, P. N., SUST 2005, 18(1), 122134.Google Scholar
Abraimov, D.; Gurevich, A.; Polyanskii, A.; Cai, X. Y.; Xu, A.; Pamidi, S.; Larbalestier, D.; Thieme, C. L. H., SUST 2008, 21 (8), 082004 (4 p).Google Scholar
Duckworth, R. C.; Paranthaman, M. P.; Bhuiyan, M. S.; List, F. A.; Gouge, M. J., IEEE Trans. Appl. Supercond. 2007, 17(2), 31593162.CrossRefGoogle Scholar
Minsoo, K.; Freyhardt, H. C.; Lee, T. R.; Jacobson, A. J.; Galstyan, E.; Usoskin, A.; Rutt, A., IEEE Trans. Appl. Supercond. 2013, 23(3), 6601304 (4 p).CrossRefGoogle Scholar
Kopera, L.; Smatko, V.; Prusseit, W.; Polak, M.; Semerad, R.; Strbik, V.; Souc, J., Physica C 2008, 468(24), 23512355.CrossRefGoogle Scholar
Glowacki, B. A.; Mouganie, T., Inst. Phys. Conf. Ser. 2003, No. 181, 1884.Google Scholar
Feys, J.; Vermeir, P.; Lommens, P.; Hopkins, S. C.; Granados, X.; Glowacki, B. A.; Baecker, M.; Reich, E.; Ricard, S.; Holzapfel, B.; Van Der Voort, P.; Van Driessche, I., J. Mater. Chem. 2012, 22, 37173726.CrossRefGoogle Scholar
Tekin, E.; Smith, P. J.; Schubert, U. S., Soft Matter 2008, 4(4), 703713.CrossRefGoogle Scholar
Windle, J.; Derby, B., J Mater Sci Lett 1999, 18(2), 8790.CrossRefGoogle Scholar
Derby, B., In Annual Review Of Materials Research, Annual Reviews: Palo Alto, 2010; Vol. 40, pp 395414.Google Scholar
Arin, M.; Lommens, P.; Hopkins, S. C.; Pollefeyt, G.; Van der Eycken, J.; Ricart, S.; Granados, X.; Glowacki, B. A.; Van Driessche, I., Nanotechnology 2012, 23(16), 165603 (10p).CrossRefGoogle Scholar
Mouganie, T.; Glowacki, B. A., J Mater Sci 2006, 41(24), 82578264.CrossRefGoogle Scholar
Vermeir, P.; Feys, J.; Schaubroeck, J.; Verbeken, K.; Baecker, M.; Van Driessche, I., Mater. Chem. Phys. 2012, 133(2-3), 9981002.CrossRefGoogle Scholar
Van Driessche, I.; Penneman, G.; De Meyer, C.; Stambolova, I.; Bruneel, E.; Hoste, S.; Ttp, In Euro Ceramics Vii, Pt 1-3, 2002; Vol. 206-2, pp 479482.Google Scholar
Penneman, G.; Van Driessche, I.; Bruneel, E.; Hoste, S., In Euro Ceramics Viii, Pts 1-3, Mandal, H. O. L., Ed. 2004; Vol. 264268, pp 501504.Google Scholar
Cloet, V.; Cordero-Cabrera, M. C.; Mouganie, T.; Glowacki, B. A.; Falter, M.; Holzapfel, B.; Engell, J.; Backer, M.; Van Driessche, I., Science and Engineering of Novel Superconductors 2006, 153158.Google Scholar
Vermeir, P.; Deruyck, F.; Feys, J.; Lommens, P.; Schaubroeck, J.; Van Driessche, I., J. Sol-Gel Sci. Techn. 2012, 62(3), 378388.CrossRefGoogle Scholar
Lommens, P.; Feys, J.; Vrielinck, H.; De Buysser, K.; Herman, G.; Callens, F.; Van Driessche, I., Dalton Trans. 2012, 41(12), 35743582.CrossRefGoogle Scholar
Fromm, J. E., IBM J Res Dev 1984, 28(3), 322333.CrossRefGoogle Scholar