Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T11:33:50.659Z Has data issue: false hasContentIssue false

Thin Nano- and Microcrystalline CVD Diamond Films for Micro-channel Cooling: Thermal and Elastic Properties

Published online by Cambridge University Press:  11 March 2011

Robbe Salenbien
Affiliation:
Katholieke Universiteit Leuven, Departement Natuurkunde, Laboratorium voor Akoestiek en Thermische Fysica, Leuven, Belgium
Jan Sermeus
Affiliation:
Katholieke Universiteit Leuven, Departement Natuurkunde, Laboratorium voor Akoestiek en Thermische Fysica, Leuven, Belgium
Paulius Pobedinskas
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Christ Glorieux
Affiliation:
Katholieke Universiteit Leuven, Departement Natuurkunde, Laboratorium voor Akoestiek en Thermische Fysica, Leuven, Belgium
Ken Haenen
Affiliation:
Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Get access

Abstract

Thin nano- to microcrystalline diamond (N/MCD) films were deposited on silicon substrates using plasma enhanced microwave chemical vapor deposition. Selected layers were covered with a thin metal layer of Cr to enhance their optical absorption characteristics for photothermal and photoacoustic experiments. A heterodyne diffraction method was used to investigate the thermoelastic signatures of the N/MCD layers. While the dispersion of surface acoustic waves turned out to be difficult to determine due to high optical scattering from the diamond crystallites, it was found that a diamond film of ~ 2 μm thick is enhancing the thermal diffusion along the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Twitchen, D.J., Pickles, C.S.J., Coe, S.E., Sussmann, R.S., Hall, C.E., Diamond Relat. Mater. 10 (3-7), 731735 (2001).Google Scholar
2. Wörner, E., Pleuler, E., Wild, C., Koidl, P., Diamond Relat. Mater. 12 (3-7), 744748 (2003).Google Scholar
3. Williams, O.A., Nesládek, M., Daenen, M., Michaelson, S., Hoffman, A., Ōsawa, E., Haenen, K., Jackman, R.B., Diamond Relat. Mater. 17(7-10), 10801088 (2008).Google Scholar
4. Philip, J., Hess, P., Feygelson, T., Butler, J.E., Chattopadhyay, S., Chen, K.H., Chen, L.C., J. Appl. Phys. 93 (4), 21642171 (2005).Google Scholar
5. Wild, C., Koidl, P., Müller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samlenski, R., Brenn, R., Diamond Relat. Mater. 2 (2-4), 158168 (1993).Google Scholar
6. Van de Rostyne, K., Glorieux, C., Gao, W., Gusev, V., Nesládek, M., Lauriks, W., Thoen, J., phys. stat. sol. (a) 172, 105111 (1999).Google Scholar
7. Williams, O.A., Douhéret, O., Daenen, M., Haenen, K., Osawa, E., Takahashi, M., Chem. Phys. Lett. 445 (4-6), 255258 (2007).Google Scholar
8. Côte, R., Van der Donck, T., Celis, J.-P., Glorieux, C., Thin Solid Films 517, 26972701 (2009).Google Scholar