Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T04:49:41.144Z Has data issue: false hasContentIssue false

Thin Films of Ionic Conductors by Laser Ablation

Published online by Cambridge University Press:  10 February 2011

M. Morcrette
Affiliation:
Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau, France Groupe de Physique des Solides, Université Pierre et Marie Curie, 4 Place Jussieu, 75251 Paris, France
P. Barboux
Affiliation:
Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau, France
J. Perrière
Affiliation:
Groupe de Physique des Solides, Université Pierre et Marie Curie, 4 Place Jussieu, 75251 Paris, France
A. Laurent
Affiliation:
Groupe de Physique des Solides, Université Pierre et Marie Curie, 4 Place Jussieu, 75251 Paris, France
J. P. Boilot
Affiliation:
Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau, France
T. Brousse
Affiliation:
Laboratoire de Génie des Matériaux, ISITEM, Rue Christian Pauc, BP 90604, 44306 Nantes Cedex 3, [email protected]
Get access

Abstract

Films of insertion compounds and solid state electrolytes have been synthesized in order to study their applications in the domain of electrochemical ion and gas sensors. Laser ablation was used to deposit lithium metal oxides (LiMO2 where M is a transition metal Co or Mn).

The chemical composition in the films has been studied by Rutherford Backscattering spectrometry and nuclear reactions analysis in the case of the light elements (O, Li). For lithium transition metal oxides (LiMO2), the oxygen and lithium contents are determined by a thermodynamical equilibrium between the films and the partial pressures in the chamber. In these cases, laser ablation allows the synthesis of crystalline structures with a large range of oxygen non stoichiometry as compared to solid state reactions. They lead to interesting electrical properties. Using the appropriate temperatures and oxygen pressures, films with the correct stoichiometry could be obtained as polycrystalline onto Si or Si/Pt substrates whereas they exhibit high texturing and epitaxial growth onto MgO or MgO/Pt.

The films of LiMn2O4 and LiCoO2 have been used as electrochemical sensors for the measurement of the lithium concentration in solutions. They show a very rapid and selective response.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bates, J., Gruzalski, G.R., Dudney, N.J., Luck, C.F., Yu, Xiaohua, Solid State Ionics 70/71 (1994) 619 Google Scholar
[2] Weppner, W., Sensors and Actuators, 12 (1987) 107.Google Scholar
[3] Shokoohi, F. K., Tarascon, J.M., Wilkens, B.J., Guyomard, D. and Chang, C.C., J. Electrochem. Soc. 139 (1992) 1845.Google Scholar
[4] Cretin, M., Alerm, L., Bartroli, J. and Fabry, P., Analytica Acta 350 (1997) 7.Google Scholar
[5] Izquierdo, R., Quenneville, E., Trigylidas, D., Girard, F., Meunier, M., Ivanov, D., Paleologou, M. and Yelon, A., J. Electrochem. Soc. 144 (1997) L323.Google Scholar
[6] Zhang, Y.C., Tagawa, H., Asakura, S., Mizusaki, J., Narita, H., J. Electrochem. Soc. 144 (1997) 4345.Google Scholar
[7] Ivanov, D., Currie, J., Bouchard, H., Lecours, A., Andrian, J., Yelon, A. and Poulin, S., Solid State Ionics (1994) 295.Google Scholar
[8] Guillot-Noël, O., Roman, R. Gomez-San, Perrière, J., Hermann, J., Graciun, V., Leborgne, C., Barboux, P., J. Applied Phys. 80 (1996) 1803.Google Scholar
[9] Morcrette, M., Guttierez-Llorente, A., Barboux, P., Laurent, A., Perrière, J., Brousse, T., Boilot, J.P., Applied phys. A 67 (1998) 425.Google Scholar
[10] Doolittle, L.R., Nucl. Instr. methods B9 (1985) 344.Google Scholar
[11] Rougier, A., Striebel, K.A., Wen, S.J., Richardson, T.J., Reade, R.P., Cairns, E.J., Applied Surf. Sci. 134 (1998) 107.Google Scholar
[12] Rougier, A., Striebel, K.A., Wen, S.J., Cairns, E.J., J. Electrochem. Soc. 145 (1998) 2975.Google Scholar
[13] Amundsen, B., D. Jones, J., Rozière, J., Burns, G.R., Chem. Mater. 7 (1995) 2151.Google Scholar
[14] Xia, Y., Yoshio, M., J. Electrochem, 144 (1997) 4186.Google Scholar
[15] Thackeray, M.M., J. Electrochem. Soc, 144 (1997) L100.Google Scholar
[16] Hosoya, M., Ikuta, H., Uchida, T. and Wakihara, M., J. Electrochem. Soc. 144 (1997) L52.Google Scholar
[17] Morcrette, M. and Perrière, J., to be published.Google Scholar
[18] Li, W. and Dahn, J. R., J. Electrochem Soc, 142 (1995) 1742.Google Scholar
[19] Kanoh, H., Tang, W. and Ooi, K., Electrochemical and Solid-State Letters. 1 (1998) 17.Google Scholar
[20] Jang, D.H., Shin, Y.J. and Oh, S.M., J. Electrochem. Soc. 143 (1996) 2204.Google Scholar
[21] Larcher, D., Courjal, P., Urbina, R.H., Gérand, B., Blyr, A., Pasquier, A. du and Tarascon, J.M., J. Electrochem. Soc. 145 (1998) 3392.Google Scholar
[22] Shen, X.M. and Clearfield, A., J. Solid State Chem. 64 (1986) 270.Google Scholar
[23] Kanoh, H., Ooi, K., Miyai, Y. and Katoh, S., Langmuir, 7 (1991) 1841.Google Scholar
[24] Morcrette, M., Barboux, P., Perrière, J., Brousse, T., Solid state Ionics 112 (1998) 249.Google Scholar
[25] Gummow, R.J., Thackeray, M.M., David, W.I.F. and Hull, S., Mat. Res. Bull. 27 (1992) 327.Google Scholar
[26] Antaya, M., Cearns, K., Preston, J.S., Reimers, J.N. and Dahn, J.R., J. Appl. Phys. 76 (1994).Google Scholar
[27] Pourbaix, M., Atlas d'équilibres électrochimiques, Gauthier eds., Paris (1963) pp. 323329.Google Scholar