Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:19:18.653Z Has data issue: false hasContentIssue false

Thin Film Transistors with Electron Mobility of 40 cm2V−1s−1 Made from Directly Deposited Intrinsic Microcrystalline Silicon

Published online by Cambridge University Press:  17 March 2011

I-Chun Cheng
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A
Sigurd Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A
Marcelo Mulato
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304, U.S.A
Get access

Abstract

We report top-gate n channel μc-Si:H TFTs with saturated electron mobilities up to 40 cm2V−1s−1 and ON/OFF ratios up to ~106. The μc-Si:H was grown from silane, dichlorosilane, and hydrogen. The glow discharge was excited at a frequency of 80 MHz to raise the growth rate to ∼1Å/sec, which is above that achievable with 13.56 MHz. Deposition temperatures were 230°C for the i-layer and 280°C (the highest temperature in the process) for the n+ source and drain layers. The TFTs were fabricated from 340-nm thick μc-Si:H films, and with a 300-nm thick gate insulator of plasma deposited SiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, Y. and Wagner, S., Appl. Phys. Lett., 75, 1125 (1999).Google Scholar
2. Tzolov, M., Finger, F., Carius, R., and Hapke, P., J. Appl. Phys, 81 (11), 7376 (1997).Google Scholar
3. Koh, J., Ferlauto, A. S., Rovira, P. I., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett., 75, 2286 (1999).Google Scholar
4. Cabarrocas, P. Roca i, Layadi, N., Heitz, T., Drevillon, B. and Solomon, I., Appl. Phys. Lett., 66, 3609 (1995).Google Scholar
5. Finger, F., Hapke, P., Luysberg, M., Carius, R., and Wagner, H., Appl. Phys. Lett., 65, 2588 (1994).Google Scholar
6. Mulato, M., Wagner, S., and Zanatta, A. R., J. Electrochem. Soc. 2000, in press.Google Scholar
7. Vallat-Sauvain, E., Kroll, U., Meier, J., and Shah, A., J. Appl. Phys., 87, 3137 (2000).Google Scholar
8. Platz, R. and Wagner, S., Appl. Phys. Lett., 73, 1236 (1998).Google Scholar
9. Kakkad, R., Smith, J., Lau, W.S. and Fonash, S. J., J. Appl. Phys, 65, 2069 (1989).Google Scholar
10. Tzolov, M., Finger, F., Carius, R., and Hapke, P., J. Appl. Phys., 81 (11), 7376 (1997).Google Scholar
11. Mulato, M., Chen, Y., Wagner, S. and Zanatta, A.R., J. Non-Cryst. Solids, 2000, in press.Google Scholar