Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T13:15:53.826Z Has data issue: false hasContentIssue false

Thin Film Synthesis of Copper-Based Perovskites Having Two-Dimensional Cation Order: (La0.8Ba0.2CuO2.6±x) (AECuO2)n Superlattices

Published online by Cambridge University Press:  16 February 2011

P.A. Salvador
Affiliation:
Laboratoire CRISMAT-ISMRA, CNRS UMR 6508, 6 Bd. du Maréchal Juin, 14050 Caen cedex, FRANCE Current address: Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213-2890
T-D. Doan
Affiliation:
Laboratoire CRISMAT-ISMRA, CNRS UMR 6508, 6 Bd. du Maréchal Juin, 14050 Caen cedex, FRANCE
B. Mercey*
Affiliation:
Laboratoire CRISMAT-ISMRA, CNRS UMR 6508, 6 Bd. du Maréchal Juin, 14050 Caen cedex, FRANCE
B. Raveau
Affiliation:
Laboratoire CRISMAT-ISMRA, CNRS UMR 6508, 6 Bd. du Maréchal Juin, 14050 Caen cedex, FRANCE
*
* Author to whom correspondence should be addressed
Get access

Abstract

Using a multi-target pulsed laser deposition (PLD) process we synthesized superlattices in the (La0.8Ba0.2CuO2.6±x)m(AECuO2)n system, where AE = Ca or Sr, and m and n were varied. Owing to the sequential deposition process, two-dimensional order is obtained on the perovskite A-sites in the superlattice structures, as evidenced by X-ray diffraction for the materials where AE = Sr. However, when AE = Ca, the films were unstable. Structural units of CaCuO2 could be incorporated into the superlattices by containing them between layers of SrCuO2: (SrCuO2)l(CaCuO2)m(SrCuO2)l(La0.8Ba0.2CuO2.6±x)n. The stability and structural characteristics of particular stacking sequences are discussed with respect to their chemical preferences and are compared to bulk materials of similar stoichiometries, i.e., the (La,AE)CuO3-x system. The latter materials do not exhibit two-dimensional cation-order. Resistance measurements of as-synthesized and post-annealed materials are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kawai, T., Egami, Y., Tabata, H. and Kawai, S., Nature 349, p. 200 (1991).Google Scholar
2. Bozovic, I., Eckstein, J. N., Virshup, G. F., Chaiken, A., Wall, M., Howell, R. and Fluss, M., J. Supercon. 7, p. 187 (1994).Google Scholar
3. Tabata, H., Tanaka, H. and Kawai, T., Appl. Phys. Lett. 65, p. 1970 (1994).Google Scholar
4. Lowndes, D. H., Goehegan, D. B., Puretzky, A. A., Norton, D. P. and Rouleau, C. M., Science 273, p. 898 (1996).Google Scholar
5. Gupta, A., Curr. Opin. Solid State Mater. Sci. 2, p. 23 (1997).Google Scholar
6. Mercey, B., Salvador, P. A., Prellier, W., Doan, T.-D., Wolfman, J., Hamet, J. F., Hervieu, M. and Raveau, B., J. Mater. Chem. p. (In Press).Google Scholar
7. Ueda, K., Tabata, H. and Kawai, T., Science 280, p. 1064 (1998).Google Scholar
8. Norton, D. P., Chakoumakos, B. C., Budai, J. D., Lowndes, D. H., Sales, B. C., Thompson, J. R. and Christen, D. K., Science 265, p. 2074 (1994).Google Scholar
9. Li, X., Kawai, T. and Kawai, S., Jpn. J. Appl. Phys. 33, p. L18 (1994).Google Scholar
10. Aruta, C., Balestrino, G., Martellucci, S., Paoletti, A. and Petrocelli, G., J. Appl. Phys. 81, p. 220 (1997).Google Scholar
11. Raveau, B., Michel, C., Hervieu, M. and Groult, D., Crvstal Chemistry of High-TC. Superconducting Copper Oxides (Springer-Verlag, Berlin, 1991).Google Scholar
12. Otzschi, K., Kogi, K. and Ueda, Y., J. Solid State Chem. 115, p. 490 (1995).Google Scholar
13. Salvador, P. A., Mason, T. O., Hagerman, M. E. and Poeppelmeier, K. R., in Chemistry of Advanced Materials: An Overview, edited by Interrante, L.V. and Hampden-Smith, M. (Wiley-VCH, Inc., 1998), p. 449.Google Scholar
14. Desfeux, R., Hamet, J. F., Mercey, B., Simon, C., Hervieu, M. and Raveau, B., Physica C 221, p. 205 (1994).Google Scholar
15. Michel, C., Rakho, L. E., Hervieu, M., Pannetier, J. and Raveau, B., J. Solid State Chem. 68, p. 143 (1987).Google Scholar
16. Prellier, W., Mercey, B., Lecoeur, P., Hamet, J. F. and Raveau, B., Appl. Phys. Lett. 71, p. 782 (1997).Google Scholar
17. Gupta, A., Hussey, B. W., Shaw, T. M., Guloy, A. M., Chern, M. Y., Saraf, R. F. and Scott, B. A., J. Solid State Chem. 112, p. 113 (1994).Google Scholar
18. Tsukamoto, A., Wen, J. G., Nakanishi, K. and Tanabe, K., Physica C 292, p. 17 (1997).Google Scholar
19. Davies, P. K. and Katzan, C. M., J. Solid State Chem. 88, p. 368 (1990).Google Scholar
20. Shaked, H., Keane, P. M., Rodriguez, J. C., Owen, F. F., Hitterman, R. L. and Jorgensen, J. D., Crystal Structures of the Hieh-TC. Superconducting Copper-Oxides (Elsevier Science B. V., Amsterdam, 1994).Google Scholar