Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:55:15.706Z Has data issue: false hasContentIssue false

Thickness Dependent Phase Formation in Fe Thin Film and Si Substrate Solid Phase Reaction

Published online by Cambridge University Press:  15 February 2011

G Y. Molnár
Affiliation:
KFKI Research Institute for Materials Science, H-1525 Budapest, P.O.Box 49, Hungary, [email protected]
G. Pető
Affiliation:
KFKI Research Institute for Materials Science, H-1525 Budapest, P.O.Box 49, Hungary, [email protected]
E. Zsoldos
Affiliation:
KFKI Research Institute for Materials Science, H-1525 Budapest, P.O.Box 49, Hungary, [email protected]
Z. E. Horváth
Affiliation:
KFKI Research Institute for Materials Science, H-1525 Budapest, P.O.Box 49, Hungary, [email protected]
N. Q. Khánh
Affiliation:
KFKI Research Institute for Materials Science, H-1525 Budapest, P.O.Box 49, Hungary, [email protected]
Get access

Abstract

The solid phase reaction of Fe thin films with (111) Si substrate was investigated at constant annealing temperature and time (700°C, 7 minutes) as a function of the initial iron film thickness (from 5 nm to 27.5 um in 2.5 nm steps). The formed phases were analysed by X-ray diffraction, Rutherford backscattering and transmission electron microscopy and optical microscopy.

After annealing FeSi phase was detected in the thinner samples. Samples with Fe layers thicker than 12.5 nm contained a β-FeSi2 phase. This special phase sequence was explained with the help of a nucleation controlled phase formation model, taking into consideration the critical radius of nuclei of the new phase. The advantages of using the film thickness as a variable during investigation of solid phase thin film reactions and the probable substrate effects are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reader, A. H., Ommen, A. H. van, Weijs, P. J. W., Wolters, R. A. M., Oostra, D. J., Rep. Prog. Phys. 56, 1397 (1992).Google Scholar
2. Gösele, U., Tu, K. N., J. Appl. Phys. 53, 3252 (1982).Google Scholar
3. d'Heurle, F. M., J. Mater. Res. 3, 167 (1988).Google Scholar
4. Molnár, G., Pető, G., Kótai, E., Zsoldos, E., Gyulai, J., Surf. and Interf. Analysis 19, 469 (1992).Google Scholar
5. Duchateau, J. P., Kuiper, A. E., Lathouwers, E. G., Reader, A. H., J. Vac. Sci. Technol. A 11, 6 1993.Google Scholar
6. Moln´r, G., Pető, G., Horváth, Z. E., Zsoldos, E., Appl. Phys. Lett. 64, 1679 (1994).Google Scholar
7. Chu, W. K., Lau, S. S., Mayer, J. W., Müller, H., Tu, K. N., Thin Solid Films 25, 393 (1975).Google Scholar
8. Bost, M. C., Mahan, I. E., J. Appl. Phys. 64, 2034 (1988).Google Scholar
9. Stuhlmann, C. H., Schmidt, J., lbach, H., J. Appl. Phys. 72, 5905 (1992).Google Scholar
10. Lau, S. S., Feng, J. S. -Y., Olowolafe, J. O., Nicolet, M. -A., Thin Solid Films 25, 415 (1975).Google Scholar
11. Cheng, H. C., Yew, T. R., Chen, L. J., J. Appl. Phys. 57, 5246 (1985).Google Scholar
12. Kubaschewski, O., in Phase Diagrams of Binary Iron Alloys, edited by Okamoto, H. (Materials Park, OH, 1993) pp. 380381.Google Scholar
13. Villars, P., Calvert, L.D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases, (Am. Soc. for Metals, Metals Park, OH, 1985) Vol.3, pp. 22322233.Google Scholar
14. Molnár, G., Gerőcs, I., Pető, G., Zsoldos, E., Jároli, E., Gyulai, J., J. Appl. Phys. 64, 6746 (1988).Google Scholar
15. Molnár, G., Pető, G., Zsoldos, E., Horváth, Z. E., Khánh, N. Q., Appl. Surf. Sci. (accepted).Google Scholar