Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T06:57:34.527Z Has data issue: false hasContentIssue false

Thickness Dependences of the Thermoelectric Properties in (001)KCl/PbTe/SnTe/PbTe Heterostructures

Published online by Cambridge University Press:  01 February 2011

Elena I. Rogacheva
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002, UKRAINE
Olga N. Nashchekina
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002, UKRAINE
Svetlana G. Lyubchenko
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002, UKRAINE
Yegor O. Vekhov
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002, UKRAINE
Mildred S. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, U.S.A.
Gene Dresselhaus
Affiliation:
National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002, UKRAINE
Get access

Abstract

The dependences of the thermoelectric properties of (001)KCl/PbTe/SnTe/PbTe three-layer structures on the SnTe layer thickness (dSnTe = 0.5–6.0 nm) at a fixed thickness of PbTe layers were studied. It was established that the thickness dependences of the Seebeck coefficient, the Hall coefficient, electrical conductivity, charge carrier mobility, and the thermoelectric power factor are distinctly non-monotonic. Two possible reasons for this non-monotonic behavior of the thickness dependences of the thermoelectric properties are considered: the size quantization of the energy spectrum in a SnTe quantum well and / or the formation of edge misfit dislocations at the interfaces after reaching the critical thickness, which corresponds to the transition from a pseudomorphic growth to the introduction of misfit dislocations at the interfaces. It is suggested that the observed effect has a general character and should be taken into account when optimizing thermoelectric properties of superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M. S., Lin, Yu-Ming, Koga, T., Cronin, S. B., Rabin, O., Black, M. R., and Dresselhaus, G.. “Low dimensional thermoelectricity”, Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III, ed. Tritt, T. M. (Academic Press, San Diego, CA, 2001) pp. 1121.Google Scholar
2. Markov, I. and Stoyanov, S., Contemp. Phys. 28, 267 (1987).Google Scholar
3. CRC Handbook of Thermoelectrics, ed. D. M. Rowe (CRC Press, Boca Raton, FL, 1995).Google Scholar
4. Anatychuk, L. I., Thermoelements and thermoelectric devices (Naukova dumka, Kiev, 1979).Google Scholar
5. Hicks, L. D., Harman, T. C., Sun, X., Dresselhaus, M. S., Phys. Rev. B 53, R10493 (1996).Google Scholar
6. Harman, T. C., Spears, D. L., Walsh, M. P., J. Electronic Materials 28, L1 (1999).Google Scholar
7. Sizov, F. F., Acta Phys. Polonica (a) 79, 83 (1991).Google Scholar
8. Abrikosov, N. Kh., Shelimova, L. E., Semiconducting Materials based on AIVBVI Compounds, (Nauka, Moscow, 1975) p. 59.Google Scholar
9. Rogacheva, E. I., Dzyubenko, N. I., in: Proceedings of the Eight International Conference on Thermoelectrics, Ed. Ehrlich, A. (Baltimore, USA, 1999) p. 226.Google Scholar
10. Fedorenko, A. I., Nashchekina, O. N., Savitskii, B. A., Shpakovskaya, L. P., Mironov, O. A., and Oszwaldowski, M., Vacuum 43, 1191 (1992).Google Scholar
11. Mironov, O. A., Chistyakov, S. V., Skrylov, I. Yu., Fedorenko, A. I., Sipatov, A. Yu., Savitskii, B. A., Shpakovskaya, L. P., Nashchekina, O. N., and Oszwaldowski, M., Superlattices & Microstructures 8, 361 (1990).Google Scholar
12. Rogacheva, E. I., Nashchekina, O. N., Vekhov, Ye. O., Dresselhaus, M. S., Cronin, S. B., Thin Solid Films 423, 115 (2003).Google Scholar
13. Rogacheva, E. I., Tavrina, T. V., Nashchekina, O. N., Grigorov, S. N., Nasedkin, K. A., Dresselhaus, M. S., Cronin, S.B., Appl. Phys. Lett. 80, 2690 (2002).Google Scholar
14. Rogacheva, E.I., Nashchekina, O. N., Grigorov, S. N., Us, M. A., Dresselhaus, M. S., Cronin, S. B., Nanotechnology 14, 53 (2003).Google Scholar
15. Davies, J. H., The Physics of Low-Dimensional Semiconductors. An Introduction (University Press, Cambridge, 1998).Google Scholar
16. Tsu, R., Howard, W. E., Esaki, L., Phys. Rev. 172, 779 (1968).Google Scholar
17. Bis, R. F., Dixon, J. R., Phys. Rev. B 2, 1004 (1970).Google Scholar
18. Petritz, R. L., Phys. Rev. 110, 1256 (1958).Google Scholar