Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:07:38.087Z Has data issue: false hasContentIssue false

Thickness Dependence of Electrical Transport in Buried CoSi2 Films Fabricated by Ion Beam Synthesis

Published online by Cambridge University Press:  03 September 2012

K. Radermacher
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Jebasinski
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
S. Manti
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
D. Monroe
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA
A.E. White
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA
K.T. Short
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA
Get access

Abstract

We have performed electrical transport measurements on thin epitaxial buried CoSi2 layers in (111) and (100)Si with thicknesses ranging from 11.5 to 110 nm. The resistivity as a function of temperature exhibits metallic behaviour. The increase of residual resistivity with decreasing thickness can be explained by quantum mechanical weak localization effects induced by the interface roughness. This is supported by magnetoresistance measurements which provide long phase coherence lengths of 1Փ, ≈ 0.75 μm in (111)Si and 1Փ, ≈ 2.3 μm in (100)Si at 4.2 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hensel, J.C., Mat. Res. Soc. Symp. Proc. 54, 4.299 (1986); J.C. Hensel, R.T. Tung, J.M. Poate and F.C. Unterwald, Phys. Rev. Lett 54, 1840 (1985).Google Scholar
[2] Phillips, J.M., Batstone, J.L., Hensel, J.C. and Cerullo, M., Appl. Phys. Lett. 51, 1895 (1987).CrossRefGoogle Scholar
[3] Känel, H. von, Henz, J., Ospelt, M., Hugi, J., Müller, E. and Onda, N., Thin Solid Films 184, 295 (1990).CrossRefGoogle Scholar
[4] Känel, H. von, Mater. Sci. Rep. 8, 193 (1992).CrossRefGoogle Scholar
[5] Badoz, P.A., Briggs, A., Rosencher, E., d'Avitaya, F. Arnaud and d'Anterroches, C., Appl. Phys. Lett. 51, 169 (1987); P.A. Badoz, E. Rosencher, A. Briggs and F. Arnaud d'Avitaya, Superlattices and Microstructures 2, 425 (1986).CrossRefGoogle Scholar
[6] Henz, J., Onda, N, Ospelt, M. and Känel, H. von, Helvetia Physica Acta 62, 262 (1989).Google Scholar
[7] Duboz, J.Y., Badoz, P.A., Rosencher, E., Henz, J., Ospelt, M., Känel, H. von and Briggs, A., Appl. Phys. Lett. 53, 790 (1988).CrossRefGoogle Scholar
[8] Fuchs, K., Proc. Cambridge Philos. Soc. 34, 100 (1938); E.H. Sondheimer, Adv. Phys. 1, 1 (1952).CrossRefGoogle Scholar
[9] Fishman, G. and Calecki, D., Phys. Rev. Lett. 62, 1302 (1989).CrossRefGoogle Scholar
[10] Tesanovic, Z., Jaric, M.V. and Maekawa, S., Phys. Rev. Lett. 57, 2760 (1986).CrossRefGoogle Scholar
[11] White, A.E., Short, K.T., Dynes, R.C., Garno, J.P. and Gibson, J.M., Appl. Phys. Lett. 50, 95 (1987); S. Mantl, Mater. Sci. Rep. 8, 1 (1992).CrossRefGoogle Scholar
[12] Jebasinski, R., Mantl, S. and Dieker, Ch., Mater. Sci. Eng. B12, 135 (1992); Thin Solid Films 223, 298 (1993).CrossRefGoogle Scholar
[13] Radermacher, K., Monroe, D., White, A.E., Short, K.T. and Jebasinski, R., Phys. Rev. B 48, (1993).CrossRefGoogle Scholar
[14] Ommen, A.H. van, Bulle-Lieuwma, C.W.T., Ottenheim, J.J.M. and Theunissen, A.M.L., J. Appl. Phys. 67, 1767 (1989).CrossRefGoogle Scholar
[15] Mattheis, L.F. and Hamann, D.R., Phys. Rev. B 37, 10623 (1988).CrossRefGoogle Scholar
[16] Hikami, S., Larkin, A.I. and Nagaoka, Y., Prog. Theor. Phys. 63, 707 (1980).CrossRefGoogle Scholar
[17] DiTusa, J.F., Parpia, J.M. and Phillips, J.M., Appl. Phys. Lett. 57,452 (1990).CrossRefGoogle Scholar