Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T06:08:50.724Z Has data issue: false hasContentIssue false

Thermotropic Chiral Nematic Polymers as Optical Materials

Published online by Cambridge University Press:  21 February 2011

S.H. Chen*
Affiliation:
Department of Chemical Engineering and Laboratory for Laser Energetics206 Gavett Hall, University of Rochester, Rochester, NY 14627
M.L. Tsai
Affiliation:
Department of Chemical Engineering and Laboratory for Laser Energetics206 Gavett Hall, University of Rochester, Rochester, NY 14627
S.D. Jacobs
Affiliation:
Department of Chemical Engineering and Laboratory for Laser Energetics206 Gavett Hall, University of Rochester, Rochester, NY 14627
*
*To whom correspondence should be addressed.
Get access

Abstract

Chiral nematic copolymers based on optically active cholesterol, dihydrocholesterol, (R)-(+)- and (S)-(−)-1-phenylethylamine, and (+)- and (−)- isopinocampheol were synthesized and characterized for the investigations of thermotropic and optical properties. Although helical sense does not appear to correlate with the sign of [α]D of the precursor chiral compound as suggested by the observations of cholesteryl and dihydrocholesteryl copolymers, the inversion of chirality in the pendant group, (R)-(+)- vs (S)-(−)-1-phenylethylamine, does lead to the opposite handedness in the resultant helical structure. To better understand the structure-property relationships involving helical sense and twisting power, systematic studies of the roles played by both nematogenic and chiral structures as well as other structural features of the comonomers should be conducted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ishihara, S.; Yokotani, F.; Matsuo, Y.; Moritomo, K.; Polymer, 1988, 29, 2141.Google Scholar
2. Tsai, M. L.; Chen, S. H.; Jacobs, S. D.; AppI. Phys. Lett., 1989, 54, 2395.Google Scholar
3. Jacobs, S. D., Cerqua, K. A.; Marshall, K. L.; Schmid, A.; Guardalben, M. J.; Skerrett, K. J., J. Opt. Soc. Am. B, 1988, 5, 1962.Google Scholar
4. Ortler, R.; Bräuchle, C.; Miller, A.; Riepl, G.; Makromol. Chem., Rapid Commun. 1989, 10, 189.Google Scholar
5. Eich, M.; Wendorff, J. H.; Makromol. Chem., Rapid Commun. 1987, 8, 467.Google Scholar
6. Nakamura, T.; Ueno, T.; Tani, C.; Mol. Cryst. Liq. Cryst. 1989, 169, 167.Google Scholar
7. Krigbaum, W.R.; Ciferri, A.; Asrar, J.; Toriumi, H.; Mol. Cryst. Liq. Cryst., 1981, 76, 79.Google Scholar
8. Finkelmann, H.; Rehage, G.; Makromol. Chem., Rapid Commun., 1982, 3, 859.Google Scholar
9. Freidzon, Ya. S.; Boiko, N. I.; Shibaev, V. P.; Platé, N. A.; Eur. Polym. J. 1986, 22, 13.Google Scholar
10. Watanabe, J.; Fukuda, Y.; Gehani, R.; Umematsu, I.; Macromolecules, 1984, 17, 1004.Google Scholar
11. Watanabe, J.; Nagase, T.; Macromolecules, 1988, 21, 171.Google Scholar
12. Tseng, S. L.; Laivins, G. V.; Gray, D. G.; Macromolecules, 1982, 15, 1262; Bhadani, S. N.; Gray, D. G.; Mol. Cryst. Liq. Cryst. 1983, 99, 29.Google Scholar
13. Watanabe, J.; Goto, M.; Nagase, T.; Macromolecules, 1987, 20, 298.Google Scholar
14. Tsai, M.L.; Chen, S.H.; Macromolecules, 1989 (in press); Tsai, M.L.; Chen, S.H.; Macromolecules, 1989 (in preparation).Google Scholar
15. Daux, W. L.; Norton, D. A.; “Atlas of Steroid Structure,” Vol.1 Plenum, New York, 1975.Google Scholar
16. Van Krevelen, D. W.; Hoftyzer, P. J.; Chapter 10 in “Properties of Polymers,” Elsevier Scientific Publishing Company, Amsterdam, 1976.Google Scholar