Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:29:41.420Z Has data issue: false hasContentIssue false

Thermo-optical switches using coated microsphere resonators

Published online by Cambridge University Press:  15 March 2011

C. Tapalian
Affiliation:
C. S. Draper Laboratory, 555 Technology Square, Cambridge, MA
J.-P. Laine
Affiliation:
C. S. Draper Laboratory, 555 Technology Square, Cambridge, MA
P. A. Lane
Affiliation:
C. S. Draper Laboratory, 555 Technology Square, Cambridge, MA
Get access

Abstract

We report optical switching by a silica microsphere optical resonator coated by a conjugated polymer. Microspheres were fabricated by melting the tip of an optical fiber and coated by dipping in a 1 mg/ml toluene solution of poly(2,5-dioctyloxy-1,4-phenylenevinylene) (DOOPPV). The resonator properties were characterized by evanescently coupling 1.55 μm light propagating along a stripline-pedestal anti-resonant reflecting optical waveguide into optical whispering gallery modes (WGMs). WGM linewidths less than 2 MHz were measured, corresponding to cavity Q > 108. WGM resonant frequency shifts as large as 3.2 GHz were observed when 405 nm pump light with a power density of ∼100 mW/cm2 was incident on the microsphere. The time constant of the observed frequency shifts is approximately 0.165 seconds, leading us to attribute the frequency shift to thermo-optic effects. Such a system should be capable of thermo-optically switching at speeds on the order of 10 kHz.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Little, B. E., Chu, S. T., Haus, H. A., Foresi, J., and Laine, J.-P., J. of Lightwave Tech. 15, 998 (1997).Google Scholar
2. Little, B. E., Foresi, J. S., Steinmeyer, G., Thoen, E. R., Chu, S. T., Haus, H. A., Ippen, E. P., Kimerling, L. C, and Greene, W., IEEE Photon. Technol. Lett. 10, 549 (1998).Google Scholar
3. Laine, J. P., Little, B. E., Lim, D. R., Tapalian, H. C., Kimerling, L. C., and Haus, H. A., IEEE Photonics Technology Letters 12, 1004 (2000).Google Scholar
4. Collot, L., Lefevre-Seguin, V., Brune, M., Raimond, J. M., and Haroche, S., Europhys. Lett. 23, 327 (1993).Google Scholar
5. Gorodetsky, M. L., Savchenkov, A. A., and Ilchenko, V. S., Opt. Lett. 21, 453 (1996).Google Scholar
6. Serpenguzel, A., Arnold, S., and Griffel, G., Opt. Lett. 20, 654 (1995).Google Scholar
7. Dubreuil, N., Knight, J. C., Leventhal, D. K., Sandoghdar, V., Hare, J., and Lefevre, V., Opt. Lett. 20, 813 (1995).Google Scholar
8. Little, B. E., Laine, J.-P., and Haus, H. A., Journal of Lightwave Technology 17, 704 (1999).Google Scholar
9. Ilchenko, V. S. and Gorodetsky, M. L., Laser Physics 2, 1004 (1992).Google Scholar
10. Little, B. E., Laine, J.-P., Lim, D. R., Kimerling, L. C., and Haus, H. A., Opt. Lett. 25, 73 (2000).Google Scholar
11. Duguay, M. A., Kokubun, Y., Koch, T. L., Pfeiffer, L., Appl. Phys. Lett. 49, 13 (1986).Google Scholar
12. Frolov, S. V., Lane, P. A., Ozaki, M., Yoshino, K., and Vardeny, Z. V., Chem. Phys. Lett. 286, 21 (1998).Google Scholar
13. Rezac, J. P. and Rosenberger, A. T., Optics Express 8, 605 (2001).Google Scholar
14. Laine, J.-P., Little, B. E., Lim, D. R., Tapalian, H. C., Kimerling, L. C., and Haus, H. A., Opt. Lett. 25, 1636 (2000).Google Scholar
15. Cai, M., Hunziker, G., and Vahala, K., IEEE Photon. Tech. Lett. 11, 686 (1999).Google Scholar
16. Lane, P. A., Cadby, A. J., Mellor, H., Martin, S. J., Lidzey, D. G., Bradley, D. D. C., Lipson, S. M., O'Brien, D. F., and Blau, W. J., Physical Review B 62, 15718 (2000).Google Scholar