Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:36:51.720Z Has data issue: false hasContentIssue false

Thermomodulated Reflectivity Spectra of Gan/Sapphire Epilayer

Published online by Cambridge University Press:  15 February 2011

Y. Li
Affiliation:
Emcore Corporation, Somerset, New Jersey 08873 The State University of New Jersey, Rutgers University, Piscataway, New Jersey 08855–0909
Y. Lu
Affiliation:
The State University of New Jersey, Rutgers University, Piscataway, New Jersey 08855–0909
H. Shen
Affiliation:
Army Research Laboratory at Fort Monmouth, New Jersey 07703–5601
M. Wraback
Affiliation:
Army Research Laboratory at Fort Monmouth, New Jersey 07703–5601
M. Schurman
Affiliation:
Emcore Corporation, Somerset, New Jersey 08873
L. Koszi
Affiliation:
Emcore Corporation, Somerset, New Jersey 08873
R. A. Stall
Affiliation:
Emcore Corporation, Somerset, New Jersey 08873
Get access

Abstract

Thermomodulation spectra from the metalorganic chemical vapor deposition (MOCVD) grown GaN have been measured in the temperature range 20 K - 310 K. A theoretical model is established to explain the modulation spectrum by considering the modulation of epilayer thickness and dielectric constant. By performing the lineshape analysis, the bandgap energy and broadening parameter were determined in the temperature range. The nonlinear temperature coefficient (Varshni coefficient) of energy gap is measured to be 5.9×10−4 eV/K. The temperature dependence of broadening parameter is also measured for the first time.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morkoc, H., Strite, S., Gao, G.B., Lin, M. E., Sverdlov, B., and Bums, M., J. Appl. Phys. 76, 1363 (1994), and references therein.Google Scholar
2. Nakamura, S., Senoh, M., Mukai, T., Jpn. J. Appl. Phys., 32, L8 (1993).Google Scholar
3. Pankove, J. I., J. Lumin. 7. 114 (1973).Google Scholar
4. Camphausen, D. L. and Connell, G. A. N., J. Appl. Phys. 42, 4438 (1972).Google Scholar
5. Teisseyre, H., Perlin, P., Suski, T., Grzegory, I., Porowski, S., Jun, J., Pietraszko, A., Moustakas, T.D.,J. Appl. Phys. 76, 2429 (1994).Google Scholar
6. Osamura, K., Naka, S., Murakami, Y., J. Appl. Phys., 46, 3432 (1975).Google Scholar
7. Monemar, B., Phys. Rev, B 10, 676 (1974).Google Scholar
8. Ilegems, M., Dingle, R., and Cogan, R. A., J. Appl. Phys. 43, 3797 (1972).Google Scholar
9. Matsumoto, T. and Aoki, M., Jpn. J. Appl. Phys. 13, 1804 (1974).Google Scholar
10. Zykov, A M. and Gaido, G. K.. Sov. Phys. Semicond. 6. 154 (1972).Google Scholar
11. Dingle, R. and Ilegems, M., Solid State Commun. 9. 175 (1971).Google Scholar
12. Ramirez-Flores, G.. Navarro-Contreras, H., Lastras-Martinez, A., Powell, R. C., and Greene, J. E., Phys. Rev. B50, 8433 (1994).Google Scholar
13. Shan, W., Schmidt, T. J., Yang, X. H., Hwang, S. J., and Song, J. J., Appl. Phys. Lett., 66, 987 (1994).Google Scholar
14. Pollak, F. H., Proc. Soc. Photo-Optical Instrum. Eng., 276, 142 (19981).Google Scholar
15. Shen, F. H., Dutta, M., J. Appl. Phys., 78, 2151 (1995).Google Scholar
16. Batz, B., in Willardson, R. K., Beer, A. C. (eds.), Semiconductors and Semimetals Vol.9 Academic Press, New York, 315 (1972).Google Scholar
17. Glembocki, O. J., Shanabrook, B. V., in Seiler, D. G. and Litter, C. L. (eds.), Semiconductors and Semimetals, Vol.67, Academic Press, New York, 222 (1992).Google Scholar
18. Sydor, Angelo, J., Mitchel, W., Haas, T. W., Yen, M. Y., J. Appl. Phys., 66, 1989 (1989).Google Scholar
19. Gaskill, D. K., Bottka, N., Aina, L., Mattingly, M., Appl. Phys. Lett., 56 1269 (1990).Google Scholar
20. Ksendzov, A., Shen, H., Pollak, F. H., Bour, D. P., Solid State Commun., 73, 11 (1990).Google Scholar
21. Foresi, J.S., Moustakas, T., Appl. Phys. Letts. 62, 2859 (1993).Google Scholar
22. Misora, M., Moustakas, T., Vaudo, R. P., Simgh, R., Shah, J. S., Proceeding of SPLE, 2519, 78 (1995).Google Scholar
23. Giordana, A., Gaskill, D. K., J. Electro. Mat., 23, 509 (1994).Google Scholar
24. Yuan, C., Salagai, T., Stall, R. A., Li, Y., Schurman, M., Hwang, C. Y., Mayo, W. E., Lu, Y., J. Electrochem. Soc., 142, L163 (1995).Google Scholar
25. 0. Glembocki, J., Bottka, N., Fumeaux, J. E., J. Appl. Phys., 57, 432 (1985).Google Scholar
26. Shen, H., Hang, Z., Pan, S.H., Pollak, F. H., Woodall, J. M., Appl. Phys. Lett., 52, 2058 (1988).Google Scholar
27. Tober, R. L., Bruno, J.D., J. Appl. Phys. 68, 6388 (1990).Google Scholar
28. Behn, V., Roppischer, H., Phys. State Solidi, 141(b), 325 (1987).Google Scholar
29. Shen, H., Pan, S. H., Pollak, F. H., Dutta, M., AuCoin, T., Phys. Rev. B36, 9384 (1987).Google Scholar
30. Born, M., Wolf, E., Principles of Optics, Pergamon, New York, 328 (1965).Google Scholar
31. Varshni, Y. P, Physica (Utrecht), 34, 149 (1967).Google Scholar
32. Lautenschlager, P., Carriga, M., Cardona, M., Phys. Rev. B36, 4813 (1987).Google Scholar