Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T10:58:42.896Z Has data issue: false hasContentIssue false

A Thermomechanical Approach to the Formation of Dark Defects in High Power Laser Diodes

Published online by Cambridge University Press:  31 January 2011

Alonso Martín-Martín
Affiliation:
[email protected], Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Pilar Iñiguez
Affiliation:
Juan Jimenez
Affiliation:
[email protected], University of Valladolid, Paseo de Belén, 1, Valladolid, 47011, Spain
Myriam Oudart
Affiliation:
[email protected], Alcatel-Thales, Palaiseau, France
Julien Nagle
Affiliation:
[email protected], Thales Research & Technology, Palaiseau, France
Get access

Abstract

A thermomechanical model to explain the formation of dark defects in AlGaAs high power laser bars is presented. The local heating at facet defects due to nonradiative recombination and self-absorption of photons induces thermal stresses capable of producing a local plastic deformation and subsequent degradation of the device. The output power density thresholds calculated are in agreement with the data reported in the literature for these lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tomm, J. W. and Jiménez, J., Quantum Well Laser Array Packaging (MacGraw-Hill, New York, 2006).Google Scholar
2. Welch, D. F., IEEE J. Selected Topics in Quantum Electronics, 6, 1470 (2000).10.1109/2944.902203Google Scholar
3. Hakki, B. W. and Nash, F. R., J. Appl. Phys. 45, 3907 (1974).10.1063/1.1663885Google Scholar
4. Henry, C. H., Petroff, P. M, Logan, R. A. and Merritt, F. R., J. Appl. Phys. 50, 3721 (1979).10.1063/1.326278Google Scholar
5. Kimerling, L. C., Solid-State Electron. 21, 1391 (1978).10.1016/0038-1101(78)90215-0Google Scholar
6. Tomm, J. W., Gerhard, A., Müller, R., Malyarchuk, V., Saint-Marie, Y., Galtier, P., Nagle, J. and Landesman, J. P., J. Appl. Phys. 93, 1354 (2003).10.1063/1.1533091Google Scholar
7. Pommiès, M., Avella, M., Cánovas, E., Jiménez, J., Oudart, M., Resneau, P. and Nagle, J., Phys. Stat. Sol. (a) 202, 625 (2005).10.1002/pssa.200460452Google Scholar
8. Martín-Martín, A., Avella, M., Iñiguez, M. P., Jiménez, J., Oudart, M. and Nagle, J., Appl. Phys. Lett. 93, 171106 (2008).10.1063/1.3009290Google Scholar
9. Martín-Martín, A., Avella, M., Iñiguez, M. P., Jiménez, J., Oudart, M. and Nagle, J., J. Appl. Phys. 106, (2009).10.1063/1.3236507Google Scholar
10. Monemar, B., Potemski, R. M., Small, M. B., Vechten, J. A. Van, Woolhouse, G. R., Phys. Rev. Lett. 41, 260 (1978).10.1103/PhysRevLett.41.260Google Scholar
11. Downes, J. and Faux, D. A., J. Appl. Phys. 77 (6), 2444 (1995).10.1063/1.358771Google Scholar
12. Landolt, M. and Börnstein, J., Numerical Data and Functional Relationships in Science and Techology, New Series, Group III (Springer, Berlin, 1987), Vol. 22, Pt A.Google Scholar
13. Hearn, E. J., Mechanics of Materials 1: An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, 3rd ed., Butterworth-Heinemann, Oxford, 2000.Google Scholar
14. Swaminathan, V. and Copley, S. M., J. Am. Ceram. Soc. 58, 482 (1975).10.1111/j.1151-2916.1975.tb18763.xGoogle Scholar
15. Suzuki, T., Yasutomi, T., Tokuoka, T. and Yonenaga, I., Philos. Mag. A 79, 2637 (1999).10.1080/01418619908212015Google Scholar
16. Tang, W. C., Rosen, H. J., Vettiger, P., Webb, D. J., Appl. Phys. Lett. 58, 557 (1991).10.1063/1.104585Google Scholar