Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:09:37.920Z Has data issue: false hasContentIssue false

Thermoluminescence of Vanadium–Doped SiO2 Synthesized by a Sol-Gel Method

Published online by Cambridge University Press:  01 February 2011

S. E. Burruel-Ibarra
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apdo. Postal 130, Hermosillo, Sonora 83000 México
R. Bernal
Affiliation:
Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-088, Hermosillo, Sonora 83190 México
L. L. Díaz-Flores
Affiliation:
Universidad Juárez Autónoma de Tabasco, Av.Universidad S/N Zona de la Cultura, Villahermosa, Tabasco 86000 México
C. Cruz-Vázquez
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apdo. Postal 130, Hermosillo, Sonora 83000 México
V. R. Orante-Barrón
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apdo. Postal 130, Hermosillo, Sonora 83000 México
V. M. Castaño
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Instituto de Física de la Universidad Nacional Autónoma de México, Apartado Postal 1-1010, Querétaro, Querétaro 76000 México
Get access

Abstract

Thermoluminescence (TL) properties of pulverized SiO2:V monoliths synthesized by a solgel method, and annealed at 1273 K during 12 h under air, are presented in this work. Characteristics TL glow curves display a complex shape with at least three maxima located at ˜379, ˜543 and ˜591K. The TL total signal exhibited a linear behavior for doses below 400 Gy. The integrated TL fades down 26 % after 3 h elapsed between irradiation and the corresponding TL readout. These results lead to conclude that annealed SiO2:V is a promising material for ionizing radiation detection and dosimetry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fardad, M. A., Journal of Materials Science 35, 1835 (2000).Google Scholar
2. Battisha, I. K. · Beyally, A. El · Mongy, S. Abd El · Nahrawi, A. M., J. Sol-Gel Sci. Techn. 41, 129 (2007)Google Scholar
3. Liu, Wei, Zhang, Yahong, and Wang, Ce, Inorg. Mater., 42, 6, 641 (2006).Google Scholar
4. Brinker, C. J. y Scherer, G.W., Sol-Gel Science The Physics and chemistry of Sol- Gel Processing. (Academic Press Inc., New York, 1990).Google Scholar
5. Ranogajec-Komor, Mária, Radiation Safety Management 2, 2 (2003).Google Scholar
6. Chen, R., McKeever, S.W.S., Theory of Thermoluminescence and Related Phenomena, (World Scientific, Singapore, 1997).Google Scholar
7. McKeever, S.W.S., Moscovitch, M., Townsend, P.D., Thermoluminescence Dosimetry Materials: Properties and Uses (Nuclear Technology Publishing, Ashford, 1995).Google Scholar
8. Mendoza-Anaya, D., Angeles, C., Salas, P., Rodriguez, R. and Castaño, V. M., Nanotechnology 14, L19 (2003).Google Scholar
9. Rodríguez, R. A., Rosa, E. De la, Salas, P., Meléndrez, R. and Barboza-Flores, M., J. Phys. D: Appl. Phys. 38, 3854 (2005).Google Scholar
10. Pérez-Salas, R., Meléndrez, R., Aceves, R., and Barboza-Flores, M., Appl. Phys. Lett. 63, 3017 (1993).Google Scholar