Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:52:04.675Z Has data issue: false hasContentIssue false

Thermoelectric structural composites and thermocouples using them

Published online by Cambridge University Press:  21 March 2011

Shoukai Wang
Affiliation:
Composite Materials Research Laboratory University at Buffalo, The State University of New York Buffalo, NY 14260-4400, U.S.A
Sihai Wen
Affiliation:
Composite Materials Research Laboratory University at Buffalo, The State University of New York Buffalo, NY 14260-4400, U.S.A
Victor H. Guerrero
Affiliation:
Composite Materials Research Laboratory University at Buffalo, The State University of New York Buffalo, NY 14260-4400, U.S.A
D.D.L. Chung
Affiliation:
Composite Materials Research Laboratory University at Buffalo, The State University of New York Buffalo, NY 14260-4400, U.S.A
Get access

Abstract

The tailoring of the sign and magnitude of the absolute thermoelectric power was achieved in structural composites by the choice of the reinforcing fibers and of the particulate filler between laminae. The resulting thermoelectric structural composites included continuous carbon fiber polymer-matrix composites and short fiber cement-matrix composites. In addition, it resulted in thermocouples in the form of structural composites. The fibers and interlaminar filler impacted the thermoelectric behavior in the longitudinal and through-thickness directions respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsukamoto, J., Takahashi, A., Tani, J., and Ishiguro, T., Carbon 27(6), 919 (1989).Google Scholar
2. Ho, C.T. and Chung, D.D.L., Carbon 28(6), 825(1990).Google Scholar
3. Gupta, V., Mathur, R.B., Bahl, O.P., Marchand, A., and Flandrois, S., Carbon 33(11), 1633 (1995).Google Scholar
4. Wessbecher, D.E., Forsman, W.C., and Gaier, J.R., Synth. Met. 26(2), 185(1988).Google Scholar
5. Hérold, C., Hérold, A., and Lagrange, P., J. Phys. Chem. Solids 57(6-8), 655 (1996).Google Scholar
6. Wang, S. and Chung, D.D.L., Compos. Interfaces 6(6), 497 (1999).Google Scholar
7. Pollock, D.D., Thermoelectricity: Theory, Thermometry, Tool (ASTM Special Technical Publication 852, Philadelphia, PA, 1985) pp. 121.Google Scholar
8. Wen, S. and Chung, D.D.L., Cem. Concr. Res. 29(12), 1989 (1999).Google Scholar
9. Sun, M., Li, Z., Mao, Q., and Shen, D., Cem. Concr. Res. 28(4), 549 (1998).Google Scholar
10. Sun, M., Li, Z., Mao, Q., and Shen, D., Cem. Concr. Res. 28(12), 1707 (1998).Google Scholar
11. Sun, M., Li, Z., Mao, Q., and Shen, D., Cem. Concr. Res. 29(5), 769 (1999).Google Scholar
12. Wen, S. and Chung, D.D.L., Cem. Concr. Res. 30(4), 661 (2000).Google Scholar
13. Chen, P.-W. and Chung, D.D.L., Composites: Part B 27B, 269 (1996).Google Scholar
14. Chen, P.-W., Fu, X. and Chung, D.D.L., ACI Mater. J. 94(3), 203 (1997).Google Scholar
15. Horne, R.A., J. Appl. Phys. 30, 393 (1959).Google Scholar
16. Bergman, D.J. and Fel, L.G., J. Appl. Phys. 85, 8205 (1999).Google Scholar