Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T15:25:47.643Z Has data issue: false hasContentIssue false

Thermoelectric Potential of Bi and Bi1−x Sbx Nanowire Arrays

Published online by Cambridge University Press:  21 March 2011

M. S. Dresselhaus
Affiliation:
Dept. of Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
Y.-M. Lina
Affiliation:
Dept. of Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
O. Rabin
Affiliation:
Dept. of Chemistry Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
S. B. Cronin
Affiliation:
Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
M. R. Black
Affiliation:
Dept. of Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
J. Y. Ying
Affiliation:
Dept. of Chemical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
Get access

Abstract

The potential of Bi and Bi1−x Sbx nanowire arrays for thermoelectric applications is discussed. The advantages of bismuth as a low dimensional thermoelectric material are enumerated and the role of modeling is emphasized. The advantages of using the Sb concentration as well as the wire diameter as materials parameters for optimizing the thermoelectric performance of these nanowires are discussed, with particular emphasis given to the development of a high performance p-type nanowire thermoelectric material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dresselhaus, M. S., Lin, Yu-Ming, Koga, T., Cronin, S. B., Rabin, O., Black, M. R., and Dresselhaus, G.. In Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III, edited by Tritt, T. M., pages 1121, Academic Press, San Diego, CA, 2001. Chapter 1.Google Scholar
[2] Lin, Y. M., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 62, 46104623 (2000).Google Scholar
[3] Zhang, Z., Ying, J. Y., and Dresselhaus, M. S., J. Mater. Res. 13, 17451748 (1998).Google Scholar
[4] Lin, Yu-Ming. Fabrication, Characterization and Theoretical Modeling of Te-doped Bi nanowire Systems for Thermoelectric Applications. Master's thesis, Massachusetts Institute of Technology, May 2000. Department of Electrical Engineering and Com-puter Science.Google Scholar
[5] Heremans, J., Thrush, C. M., Lin, Yu-Ming, Cronin, S., Zhang, Z., Dresselhaus, M. S., and Man, J. F. , sfield, Phys. Rev. B 61, 29212930 (2000).Google Scholar
[6] Lin, Y.-M., Cronin, S. B., Ying, J. Y., Dresselhaus, M. S., and Heremans, J. P., Appl. Phys. Lett. 76, 39443946 (2000).Google Scholar
[7] Lenoir, B., Cassart, M., Michenaud, J. P., Scherrer, H., and Scherrer, S., J. Phys. Chem. Solids 57, 8999 (1996).Google Scholar
[8] Rabin, O., Lin, Yu-Ming, and Dresselhaus, M. S., Appl. Phys. Lett. 79, 8183 (2001).Google Scholar
[9] Lin, Yu-Ming, Cronin, S. B., Rabin, O., , Jackie Ying, Y., and Dresselhaus, M. S., Appl. Phys. Lett. 79, 677679 (2001).Google Scholar
[10] Lin, Yu-Ming, Cronin, S. B., Rabin, O., Ying, Jackie Y., and Dresselhaus, M. S.. In Thermoelectric Materials 2001 - Research and Applications: MRS Symposium Pro-ceedings, Boston, December 2001, edited by Nolas, G. S., Johnson, D. C., and Mandrus, D. G., page G10.6, Materials Research Society Press, Pittsburgh, PA, 2002.Google Scholar
[11] Black, M. R., Lin, Y.-M., Cronin, S. B., Rabin, Oded, and Dresselhaus, M. S.. In Anisotropic Nanoparticles: Synthesis, Characterization and Applications: MRS Sym-posium Proceedings, Boston, December 2000, edited by Stranick, S., Searson, P. C., Lyon, L. A., and Keating, C., pages C4321–C4327, Materials Research Society Press, Pittsburgh, PA, 2001.Google Scholar
[12] Black, M. R., Padi, M., Cronin, S. B., Lin, Y.-M., Rabin, O., McClure, T., Dresselhaus, G., Hagelstein, P. L., and Dresselhaus, M. S., Appl. Phys. Lett. 77, 41424144 (2000).Google Scholar
[13] Black, M. R., Masklay, K. R., Rabin, O., Lin, Y. M., Cronin, S. B., Padi, M., Fink, Y., and Dresselhaus, M. S.. In Nanophase and Nanocomposite Materials IV: MRS Symposium Proceedings, Boston, December 2001, edited by Komarneni, S., Vaia, R. A., Lu, G. Q., Matsushita, J.-I., and Parker, J. C., page AA8.9, Materials Research Society Press, Pittsburgh, PA, 2002.Google Scholar
[14] Rabin, O., Herz, P. R., Cronin, S. B., Lin, Y. M., Akinwande, A. I., and Dres-selhaus, M. S.. In Nonlithographic and Lithographic Methods for Nanofabrication: MRS Symposium Proceedings, Boston, November 2000, edited by Rogers, J. A., Karim, A., Merhari, L., Norris, D., and Xia, Y., pages D471–D476, Materials Research Society Press, Pittsburgh, PA, 2001.Google Scholar
[15] Rabin, O., Lin, Y. M., Cronin, S. B., and Dresselhaus, M. S.. In Thermoelectric Ma-terials 2001 - Research and Applications: MRS Symposium Proceedings, Boston, December 2001, edited by Nolas, G. S., Johnson, D. C., and Mandrus, D. G., page G8.9, Materials Research Society Press, Pittsburgh, PA, 2001.Google Scholar