No CrossRef data available.
Published online by Cambridge University Press: 19 May 2014
Recently there have been reports of hot carrier thermoelectric response in nanostructured materials like graphene and MoS. We report observing that thermoelectric nanowire junctions detect light. In these experiments we employed devices composed of bismuth nanowire arrays which are capped with a transparent indium tin oxide electrode. The incident surface features very low optical reflectivity and enhanced light trapping. The unique attributes of the thermoelectric arrays are the combination of strong temporal and optical wavelength dependences of the photocurrent. Under infrared illumination, the signal can be completely described by “quasi-equilibrium” thermoelectric effects considering cooling rates given by heat diffusion through the array. The thermal diffusivity is found to be less (by a factor of 3.5) than in the bulk, a result that we discuss in terms of phonon confinement effects. In addition to a thermoelectric response, under visible illumination, we observe a photovoltaic response.