Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T10:58:27.834Z Has data issue: false hasContentIssue false

Thermoelectric Measurements of Ni Nanojunctions

Published online by Cambridge University Press:  08 March 2013

See Kei Lee
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
Ryo Yamada
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
Hirokazu Tada
Affiliation:
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan.
Get access

Abstract

We investigated the thermoelectric voltage (TEV) of atomic contacts of nickel (Ni) by using a scanning tunneling microscope. The TEV of nanoscale junctions show fluctuation in stepwise manner. Histogram analysis of TEV observed in the Ni point contact with the conductance of 1.2 G0 (G0 = 2e2/h is the quantum of charge conductance) revealed multiple voltage peaks at larger and smaller values observed at conductance of 2.5 G0, which showed a single sharp voltage peak. Fluctuation observed in our results suggest that there is transition of the transport channel distribution caused by the thermal motion of Ni atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Malen, J. A., Yee, S. K., Majumdar, A. and Segalman, R. A., Chemical Physics Letters 491, 109122 (2010).CrossRefGoogle Scholar
Mahan, G. D. and Sofo, J. O., Proc. Natl Acad. Sci. USA 93 (15) 7436. (1996).CrossRefGoogle Scholar
Harman, T. C., Taylor, P. J., Walsh, M. P., and LaForge, B. E., Science 297 (5590), 2229 (2002).CrossRefGoogle Scholar
Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47 (24) 16631, 1993.CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T. and O’ Quinn, B., Nature 413, 597602, 2001 CrossRefGoogle Scholar
Neophytou, N. and Kosina, H., Journal of Computational Electronics 11: 2944, (2012).CrossRefGoogle Scholar
Streda, P., J. Phys.: Condens. Matter l, 102551027 (1989)Google Scholar
van Houtent, H, Molenkampt, L. W., Beenakkert, C. W. J. and Foxon, C. T., Semicond. Sci. Technol. 7, 82158221 (1992)Google Scholar
Ludoph, B. and van Ruitenbeek, J. M., Phys.Rev.B 59, 12290 (1999).CrossRefGoogle Scholar
Sullivan, M. R., Boehm, D. A., Ateya, D. A., Hua, S. A. and Chopra, H. D., Physical Rev. B 71, 024412 (2005 CrossRefGoogle Scholar
Calvo, M. R., Ferna´ndez-Rossier, J., Palacios, J. J., Jacob, D., Natelson, D. and Untiedt, C., Nature Lett. 458, 11501154 (2009)CrossRefGoogle Scholar
Pauly, F., DreherJ, M., Häfner, M., Cuevas, J. C., Nielaba, P., Phys. Rev. B 74, 235106(2006).CrossRefGoogle Scholar
Reddy, P., Jang, SY, Segalman, R. A. and Majumdar, A., Science 315, 1568 (2007).CrossRefGoogle Scholar
Yee, S. K., Malen, J. A., Majumdar, A. and Segalman, R. A., Nano Lett. 11, 4089 (2011).CrossRefGoogle Scholar
Pauly, F., Viljas, J. K., Burkle, M., Dreher, M., Nielaba, P., and Cuevas, J. C., Phys. Rev. B 84, 195420 (2011). – molecular dynamics thermopower and conductance calculation CrossRefGoogle Scholar
Ienaga, K., Nakashima, N., Inagaki, Y., Tsujii, H., Honda, S., Kimura, T., and Kawae, T., Phys. Rev. B 86, 064404 (2012).CrossRefGoogle Scholar
Malen, J. A., Doak, P., Baheti, K., Tilley, T. D., Majumdar, A. and Segalman, R. A., Nano Lett. 9 (10) 3406 (2009).CrossRefGoogle Scholar