Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:51:23.289Z Has data issue: false hasContentIssue false

Thermodynamic Stability of Ordered Intermetallic Compound Phases

Published online by Cambridge University Press:  28 February 2011

Y. Austin Chang
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706
Joachim P. Neumann
Affiliation:
Materials Department, College of Engineering and Applied Science, University of Wisconsin-Milwaukee, Milwaukee, WI 53201
Shuang-Tin Chen
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706
Get access

Abstract

The Wagner-Schottky model was used to describe the thermodynamic behavior of ordered intermetallic compound phases. To demonstrate the utility of the approach, the models developed for triple-defect B2 (and B32) and anti-structure L10 phases were used to describe the thermodynamic properties of β-AlLi and γ-TiAl respectively. Since any potential engineering materials to be developed on the basis of intermetallics will be multi-component systems, the methodology was extended to describe the thermodynamic properties of ternary intermetallics. The ternary Ti-Mo-Al system was used as an example for discussion. It is believed that the general topologies concerning the phase equilibria of Ti-M-AI with M being V, Nb, Ta, Mo and W are similar. The relative stabilities of the competing phases, i.e. BCC and HCP, in the mid-composition region of Ti-M-AI were discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, C. T., Int. Metals Rev., 1984, 29 168.Google Scholar
2. Thorton, P. H., Davies, R. G., and Johnston, T. L., Metall. Trans., 1970, 1, 207.Google Scholar
3. Copley, S. M. and Kear, B. H., Trans. AIME, 1967, 239 977.Google Scholar
4. Stoloff, N. S. and Davies, R. G., Acta Met., 1964, 12 473.Google Scholar
5. Liang, S. J. and Pope, D. P., Acta Met., 1977, 25. 485.Google Scholar
6. Lall, C., Chin, S., and Pope, D. P., Metall. Trans. A, 1979, 10A, 1323.Google Scholar
7. Wagner, C. and Schottky, W., Z. Phys. Chem., 1931, B11. 163.Google Scholar
8. Neumann, J. P., Chang, Y. A. and Lee, C. M., Acta Met., 1976, 24, 593.Google Scholar
9. Bakker, H. and Ommen, A. H. van, Acta Met., 1978, 26, 1047.Google Scholar
10. Edelin, G., Acta Met., 1979, 27, 455.Google Scholar
11. Jacobi, H., Stockel, D. and Lukas, H. L., Z. Metallk., 1971, 6, 305.Google Scholar
12. Libowitz, G. G. and Lightstone, J. B., J. Phys. Chem. Solids, 1967, 28, 1145.Google Scholar
13. Libowitz, G. G., J. Solid State Chem., 1969,1, 50.Google Scholar
14. Liang, W. W., Chang, Y. A., Lau, S. K. and Gyuk, I., Acta Met., 1973, 21 629.Google Scholar
15. Hsiao, Y.-J., Chang, Y. A. and Ipser, H., J. Electrochem. Soc., 1977, 124. 1286.Google Scholar
16. Gyuk, I., Liang, W. W. and Chang, Y. A., J. Less-Common Metals, 1974, 38, 249.Google Scholar
17. Chang, Y. A. and Neumann, J. P., Prog. Solid State Chem., (Eds.: Rosenblatt, G. M. and Worrell, W. L.), 1982, 14, 221.Google Scholar
18. Hsieh, K. C., Vlach, K. C. and Chang, Y. A., High Temp. Sci., 1987, 23. 17; and K. C. Hsieh, R. Schmid and Y. A. Chang, High Temp. Sci., 1987, 23 39.Google Scholar
19. Lin, J.-C., Ngai, T. L. and Chang, Y. A., Metall. Trans. A, 1986, 17A, 1241.Google Scholar
20. Ipser, H., Hu, D.-C. and Chang, Y. A., Z. Metallk., 1987, 7 131.Google Scholar
21. Mikula, A., Schuster, W., Chang, Y. A. and Henig, E.-T., Z. Metallk., 1987, 78,172.Google Scholar
22. Chen, S.-W., Jan, C.-H., Lin, J.-C. and Chang, Y. A., Metall. Trans. A, 1989, 20A, 2247.Google Scholar
23. Hsieh, K.-C. and Chang, Y. A., Scri. Met., 1988, 22 1267.Google Scholar
24. Hsieh, K.-C., Jewett, T., Chang, Y. A. and Perepezko, J. H., Frist Annual University of California-Santa Barbara URI Report, Supported by DARPA through ONR Contract (0014-86-0753) September 15, 1987.Google Scholar
25. Lin, J.-C., first as a Research Associate under the Supervision of Y. A. Chang at UW-Madison and currently at Alcoa Labs., Aluminum Co. of America, Alcoa, Pa. Google Scholar
26. Mishurda, J. C., Lin, J.-C., Chang, Y. A. and Pcrepezko, J. H., in High-Temperature Ordered Intermetallic Alloys III (Eds.: Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C.), MRS Symposium Proc. 1989,133 57.Google Scholar
27. Mirshurda, J. C., M. S. Thesis, University of Wisconsin-Madison, 1989.Google Scholar
28. McCullough, C., Valencia, J. J., Mateos, H., Levi, C. G., Mehrabian, R. and Rhyne, K A., Scri. Met., 1988, 22. 1131.Google Scholar
29. McCullough, C., Valencia, J. J., Levi, C. G. and Mehrabian, R., Acta Met., 1989, 32.1321.Google Scholar
30. Valencia, J. J., McCullough, C., Levi, C. R. and Mehrabian, R., Scr. Met., 1987, 2–1 1141; and Acta Met., 1989, 37, 2517.Google Scholar
31. Hultgren, R. R., Desai, P. D., Hawskins, D. T., Gleiser, M., Kelley, K. K. and Wagman, D. D., Selected Values of the Thermodynamic Properties of the Elements. ASM, Metals Park, Ohio, 1973.Google Scholar
32. Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams, Academic Press, New York, 1970.Google Scholar
33. Chuang, Y.-Y., Schmid, R. and Chang, Y. A., Metall. Trans. A, 1984, 1A, 1921.Google Scholar
34. Kubaschewski, O. and Dench, W. A., Acta Met., 1955, 1 339.Google Scholar
35. Kubaschewski, O. and Heymer, G., Trans. Faraday Soc., 1960, 56, 473.Google Scholar
36. Jewett, T. J., Lin, J.-C., Bonda, N. R., Seitzman, L. E., Hsieh, K. C., Chang, Y. A. and Perepezko, J. H., in HighmTemperature Ordered Intermetallic Alloys Ill, (Eds. Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C.) MRS Symosium Proc., 1989,133,69.Google Scholar
37. Perepezko, J. H., Chang, Y. A., Seitzman, L. E., Lin, J. C., Bonda, N. R., Jewett, T. J. and Mishurda, J. C., in High-Temperature Aluminides and Intermetallics. Proc. Symp., Indianapolis, Indiana, Oct. 1989, ASM/TMS-AIME.Google Scholar
38. Strychor, R., Williams, J. C. and Soffa, W. A., Metall. Trans. A, 1988,19A. 225.Google Scholar
39. Banerjee, D., Gogia, A. K., Nandi, T. K. and Joshi, V. A., Acta Met., 1988, 36, 871.Google Scholar
40. Kaufman, M. J., Broderick, T. F., Ward, C. H., Rowe, R. G. and Froes, F. H., Proc. of the 6th World Conference on Titanium Cannes, France, 1988.Google Scholar
41. Kaufman, M. J., AFWL Technical Report 88-4113,1988.Google Scholar
42. Muraleedharan, K. and Banerjee, D., Metall. Trans. A, 1989, 2A, 1139.Google Scholar
43. Banerjee, D., Nandy, T. K. and Gogia, A. K., Scr. Met., 1987, 21.597.Google Scholar
44. Bendersky, L. A. and Boettinger, W. J., in High-Temperature Ordered Intermetallic Alloys III (Eds.: Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. C.), MRS Symposium Proc., 1989,133.45.Google Scholar
45. Bendersky, L. A., Boettinger, W. J., Burton, B. P., Bianeaniello, F. S. and Shoemaker, C. B., Acta Met., 1990, in print.Google Scholar
46. Massalski, T. B., Murray, J. L., Bennett, L. H. and Baker, H., Binary Phase Diagrams 1986, ASM, Metals Park, Ohio, 44073.Google Scholar
47. Hamajma, T. and Weissmann, S., Metall. Trans. A, 1975, 6A, 1535.Google Scholar
48. Hamajima, T., Luetjering, G. and Weissmann, S., Metall. Trans., 1972, 3 2805.Google Scholar
49. Banerjee, D., Krishnan, R. V. and Vasu, K. I., Metall. Trans. A, 1980, 11A 1095.Google Scholar
50. Hansen, R. C. and Raman, A., Z. Metallk., 61.1970,115.Google Scholar
51. Zangvil, A., Osamura, K. and Murakami, Y., Metal Sci., 1975, 9 27.Google Scholar
52. Bhm, H. and hberg, K. La, Z. Metallk., 49, 1958,173.Google Scholar
53. Gross, J. P., Ansara, I., Allibert, M. and Alheritiere, E., Mom. Etu. Sci. Rev. Met., 1986,448.Google Scholar
54. Banerjee, D., Krishnan, R. V. and Vasu, K. I., Trans. Indian Inst Met., 1978, 31, 299.Google Scholar
55. Danilenko, V. M. and Rubashevskii, A. A., Translated from Poroshkovaya Met., 1982, no. 9 (237), 46.Google Scholar
56. Hashimoto, K., Doi, H. and Tsujimoto, T., Trans. Jpn. Inst. Metals, 1986,27,741.Google Scholar
57. Perepezko, J. H., Lin, J.-C., Jewett, T. J. and Chang, Y. A., Final Report (March 15, 1988-September 30, 1989) submitted to UC-Santa Barbara through ONR Contract (N00014-86-K-0178).Google Scholar
58. Sridharan, S. and Nowotny, H., Z. Metallk., 1983, 74, 468.Google Scholar
59. Subramanian, P. R., Miracle, D. B. and Mazdiyasai, S., Metall. Trans. A, 1990, 21A. 539.Google Scholar
60. Brewer, L. and Lamoreaux, R. H., Molybdenum: Physico-chemical Properties of Its Compounds and Alloys Atomic Energy Review Special Issue No. 7, Intn. Atomic Energy Agency, Viennea, 1980.Google Scholar
61. Shilo, I., Franzen, H. F. and Schiffman, R. A., J. Electrochem. Soc., 1982,129,1608.Google Scholar
62. Kokot, L., Horyn, R. and Iliew, N., J. Less-Common Met., 1976, 44, 215.Google Scholar
63. Lundin, C. E. and Yamamoto, A. S., Trans. TMS-AIME, 1966, 236 863.Google Scholar
64. Neckel, A. and Nowotny, H., Int. Leichtmetalltag., 5th Meeting, 1968, Aluminum-Verlag, Dtlsseldorf, F. R. Germany, 2226.Google Scholar
65. Gelashvili, G. A. and Dzneladze, Zh. I., Soviet Powder Metall. Ceram., 1975,14,732.Google Scholar
66. Gorelkiu, O. S., Dubrovin, A. S., Kolesnikova, O. D., Demidov, Yu. Ya. and Chirkov, N. A., Proizvodsto Ferrosplavov (Celjabinsk), 1972,123.Google Scholar
67. Chang, Y. A., Neumann, J. P., Mikula, A. and Goldberg, D., INCRA Monograph VI, Phase Diagrams and Thermodynamic Properties of Ternary Copper-Metal Systems Intern. Copper Research Ass'n., Inc., NY, 1979.Google Scholar
68. Kontizer, D. G., Jones, I. P. and Fraser, H. L., Ser. Met., 1987, 20. 265.Google Scholar