Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:51:09.264Z Has data issue: false hasContentIssue false

Thermodynamic Simulation of MOCVD YBa2Cu3O7−x Thin Film Deposition

Published online by Cambridge University Press:  15 February 2011

C. Bernard
Affiliation:
L.T.P.C.M. – Enseeg, BP.75, 38402 St Martin d'Hères, France.
F. Weiss
Affiliation:
LMGP, BP.46, 38402 St Martin d'Hères, France.
A. Pisch
Affiliation:
L.T.P.C.M. – Enseeg, BP.75, 38402 St Martin d'Hères, France. LMGP, BP.46, 38402 St Martin d'Hères, France.
R. Madar
Affiliation:
LMGP, BP.46, 38402 St Martin d'Hères, France.
Get access

Abstract

Chemical Vapour Deposition of YBa2Cu3O7−x superconductors using organometallic precursor materials involves the formation of a great variety of condensed phases (oxides, carbonates, hydroxides, carbides, hydrides) and a complex gas phase. Therefore, the possibility of calculating the stability ranges of the different phases susceptible of being deposited and the influence of the main experimental parameters (precursor partial pressure, oxygen partial pressure, total pressure, temperature) is very attractive. Recently, some initial attempts have been published, but the authors did not have sufficiently complete and reliable thermodynamic data on the species involved in the process. These results will be discussed. Furthermore, a homogeneous and complete set of data for the whole system will be presented, and the reactions of the deposition process will be simulated on the basis of this data set. The most important results will be compared to the previous calculations and to recent experimental work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R., Gao, L., Huang, Z. J., Wang, Y. Q and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
[2] Erbil, A., Zhang, K., Kwak, B. S. and Boyd, E. P. SPIE Procd. 1187, 104 (1989).Google Scholar
[3] Hitchman, M. L., Gilliland, D. D., Cole-Hamilton, D. J. and Thompson, S. C., in New Materials and their Applications 1990. Ed. (Holland, D., Institute of Physics, Bristol, 1990), p. 305 Google Scholar
[4] Tonge, L. M., Richeson, D. S., Marks, T. J., Zhao, J., Wang, J., Wessels, B. W., Marcy, H. O. and Kannewurf, C. R., Adv. Chem. Ser. 226, 351 (1989).CrossRefGoogle Scholar
[5] Zhao, J. and Norris, P. in Synthesis and Characterisation of High-Temperature Superconductors Ed. (Pouch, J. J. et al. , Trans. Tech. Publications, Aedermannsdorf 1993), p.130 Google Scholar
[6] Leskela, M., MÖsla, H. and Niinisto, L., Supercond. Sci. Technol. 6, 627 (1993).Google Scholar
[7] Zhao, J. and Norris, P., Thin Solid Films 206, 122 (1991).,Google Scholar
[8] Harsta, A. and Carlsson, J. O., J. Crystal Growth 110, 631 (1991).CrossRefGoogle Scholar
[9] Vahlas, C. and Besmann, T. M., J. Am. Ceram. Soc. 10, 2679 (1992).Google Scholar
[10] Bernard, C. and Madar, R. in Chemical Vapour Deposition of Refractory Metals and Ceramics, Ed. By Besmann, T. M. and Gallois, B. M. (Mat. Res. Soc. Procd. 168, Pittsburg, PA, 1990) pp. 317.Google Scholar
[11] Rais, A., Ganteaume, M., Mathieu, J. C. and Rogez, J., CNRS, Marseille, Brite Euram project BREU 0203C.Google Scholar
[12] Watson, A., Shefield, Brite Euram project BREU 0203C.Google Scholar
[13] Azad, A. M. and Sreedharan, O. M., J. Mat. Sci. Lett. 8, 67 (1989).Google Scholar
[14] Kale, G. M. and Jacob, K. T., Solid State Ionics 34, 247 (1989).Google Scholar
[15] Idemoto, Y., Takahaschi, J. and Fueki, K., Phys. C 194, 177 (1992).Google Scholar
[16] Lopato, L. M., Maister, I. M. and Shevchenko, A. V., Izv. Akad. Nauk SSSR, Neorg. Mat. 8, 5, 861 (1972).Google Scholar
[17] Lee, B. J. and Lee, D. N., J. Am. Ceram. Soc. 72, 314 (1989).CrossRefGoogle Scholar
[18] Frase, K. G. and Clarke, D. R. Adv. Ceram. Mat. 2, 295 (1987).Google Scholar
[19] Roth, R. S., Davis, K. L. and Dennis, J. R., Adv. Ceram. Mat. 2, 303 (1987).Google Scholar
[20] Hack, K., Aachen, Brite Euram project BREU 0203C.Google Scholar
[21] Wiesner, V., Krabbes, G., Riestschel, M., Mat. Res. Bull. 24, 1261 (1989).Google Scholar
[22] Tretyakov, Yu. D., Kaul, A. R. and Makukhin, N. V., J. Sol. St. Chem. 17, 183 (1976).Google Scholar
[23] Pankajavalli, R. and Sreedharan, O. M., J. Mater. Sci. Lett. 7, 714 (1988).Google Scholar
[24] Borowiec, K. and Kolbrecka, K. J. Less-Common Met. 613, 143 (1990).Google Scholar
[25] C. Ji. Fan and Zhao, Z., J. Less-Common Met. 161, 49 (1990).Google Scholar
[26] Voronin, G. F., Degterov, S. A. and Skolis, Yu.Ya. Procd. 3rd German Soviet Bilat. Seminar on High Tc Supercond. Karlsruhe 1990.Google Scholar
[27] Glathe, F., Oppermann, H. and Reichelt, W., Z. Anorg. Allg. Chem. 606, 41 (1991).Google Scholar
[28] Suzuki, R. M., Okada, S., Oishi, T. and Ono, K., Mat. Trans., JIM 31, 10, 1078 (1990).Google Scholar
[29] Shimpo, R. and Nakamura, Y., J. Jap. Inst. Met. 54, 4, 549 (1990).Google Scholar
[30] Zhou, Z. and Navrotsky, A., J. Mat. Res. 7, 11, 2920 (1992).Google Scholar
[31] Navrotsky, A. in Chemistry of Electronic Ceramic Materials (NIST specia publication 804, Gaithersburg, MD, 1990), p. 370.Google Scholar
[32] Mudretsova, S. N., Vasilyeva, I. A. and Filippova, Zh. V., Zh. Fiz. Khim. 63, 3108 (1989).Google Scholar
[33] Beyers, R. and Ahn, B. T., IBM Research Report RJ 7797 (71914), 1990.Google Scholar
[34] Voronin, G. F. and Degterov, S. A. submitted to J. Solid State Chem. (1993).Google Scholar
[35] Azad, A. M., Sreedharan, O. M. and Jacob, K. T., J. Mater. Sci. 26, 3374 (1991).Google Scholar
[36] Borowiec, K. and Kolbrecka, K. J.Alloys and Compounds 176, 225 (1991).Google Scholar
[37] Morss, L. R., Dorris, S. E., Lindemer, T. B. and Naito, N., Eur. J. Solid. State Inorg. Chem. 27, 327 (1990).Google Scholar
[38] de Leeuw, D. M., Mutsaers, C. A. H. A., Langereis, C., Smoorenburg, H. C. A. and Rommers, R. J., Physica C, 152,39 (1988).CrossRefGoogle Scholar
[39] Abbattista, F., Vallino, M., Mazza, D., Luco-Borlera, M. and Brisi, C., Mater. Chem. Phys., 20, 191 (1988).Google Scholar
[40] Beyers, R. and Ahn, B. T., Ann. Rev. Mat. Sci. 21, 335 (1991).Google Scholar
[41] Osamura, K. and Zhang, W., Z. Metallkde. 84, 522 (1993).Google Scholar
[42] Karen, P. and Kjekshus, A., J. of sol. State Chem. 94, 298 (1991).Google Scholar
[43] Garzon, F. G., Raistrick, I. D., Ginley, D. S. and Halloran, J. W., J. Mater. Res. 6, 5, 885 (1991).Google Scholar
[44] Pankajavalli, R. and Sreedharan, O. M., J. Mater. Sci. Lett. 8, 225(1989).Google Scholar
[45] Voronin, G. F. and Degterov, S. A., Physica C, 176, 387 (1991).Google Scholar
[46] Jorgensen, J. D., Veal, B. W., Kwok, W. K., Crabtree, G. W., Umezawa, A., Nowicki, L. J. and Paulikas, A. P., Phys. Rev. B 36, 5731 (1987).Google Scholar
[47] Jorgensen, J. D., Hinks, D. G., Shaked, H., Dabrowski, B., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Kwok, W. K., Umezawa, A., Nunez, L. H., Dunlap, B. D., Segre, C. U. and Kimball, C. W., Physica B 156–157, 877 (1989).Google Scholar
[48] Jorgensen, J. D., Beno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C. U., Zhang, K. and Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).Google Scholar
[49] Jorgensen, J. D., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Claus, H. and Kwok, W. K., Phys. Rev. B 41, 1863 (1990).CrossRefGoogle Scholar
[50] Andersen, N. H., Lebech, B. and Poulsen, H. F., J. Less-Common Metals 164–165, 124 (1990).Google Scholar
[51] Specht, E. D., Sparks, C. J., Dhere, A. G., Brynestad, J., Cavin, O. B., Kroeger, D. M. and Oye, H. A., Phys. Rev. B 37, 7426 (1988).CrossRefGoogle Scholar
[52] Alario-Franco, M. A., Chaillout, C., Capponi, J. J., Chenavas, J. and Marezio, M., Physica C 156, 455 (1988).Google Scholar
[53] Reyes-Gasca, J., Krekels, T., Van Tendeloo, G., Van Landuyt, J., Bruggink, W. H. M., Verweij, M. and Amelinckx, S., Solid State Communications 70, 269 (1989).Google Scholar
[54] de Fontaine, D., Wille, L. T. and Moss, S. C., Phys. Rev. B 36, 5709 (1987).Google Scholar
[55] Wille, L. T. and de Fontaine, D., Phys. Rev. B 37, 2227 (1988).Google Scholar
[56] Sterne, P. A. and Wille, L. T., Physica C 162–164, 223 (1989).Google Scholar
[57] Ceder, G., Asta, M., Carter, W. C., Kraitchman, M., de Fontaine, D., Mann, M. E. and Sluiter, M., Phys. Rev. B 41, 8698 (1990).Google Scholar
[58] de Fontaine, D., Ceder, G. and Asta, M., J. Less-Common Metals 164–165, 108 (1990).Google Scholar
[59] Asta, M., de Fontaine, D., Ceder, G., Salomons, E. and Kraitchman, M., J. Less-Common Metals 168, 39 (1991).Google Scholar
[60] Kikuchi, R. and Choi, J., Physica C 160, 347 (1989).Google Scholar
[61] Zubkus, V. E., Lapinskas, S. and Tornau, E. E., Phys. Stat. Sol. B 156, 93 (1989).Google Scholar
[62] Matic, V. M., Physica A 184, 571 (1992).Google Scholar
[63] Pasturel, A. and Colinet, C., Grenoble, Brite Euram project BREU 0203C.Google Scholar
[64] Hillert, M. and Staffansson, L. I., Acta Chem. Scand. 24, 3618 (1970).Google Scholar
[65] Andersson, J. O., Guillermet, A. F., Hillert, M., Jansson, B. and Sundman, B., Acta Metall., 34, 437 (1986).Google Scholar
[66] Huang, W. and Sundman, B., Stockholm, Brite Euram project BREU 0203C.Google Scholar
[67] Lindemer, T. B., Hunley, J. F., Gates, J. E., Sutton, A. L. Jr., Brynestad, J., Hubbard, C. R. and Gallagher, P. K., J. Am. Ceram. Soc., 10, 1775 (1989).Google Scholar