Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T06:05:18.876Z Has data issue: false hasContentIssue false

Thermodynamic Coupling of Heat and Matter Flows in Near-Field Regions of Nuclear Waste Repositories

Published online by Cambridge University Press:  25 February 2011

C. L. Carnahan*
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Get access

Abstract

In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsang, C. F., Noorishad, J., and Wang, J. S. Y.. Mat. Res. Soc. Symp. Proc. 15, 515522 (1983).10.1557/PROC-15-515Google Scholar
2. Cary, J. W. and Taylor, S. A., Soil Sci. Soc. Amer. Proc. 26, 413416 (1962).10.2136/sssaj1962.03615995002600050004xCrossRefGoogle Scholar
3. Cary, J.W. and Taylor, S. A., Soil Sci. Soc. Amer. Proc. 26, 417420 (1962).10.2136/sssaj1962.03615995002600050005xGoogle Scholar
4. Taylor, S. A. and Cary, J. W., Soil Sci. Soc. Amer. Proc. 2 167171 (1964).10.2136/sssaj1964.03615995002800020013xGoogle Scholar
5. Groenevelt, P. H. and Bolt, G. H., Hydrology, J. 7, 358388 (1969).Google Scholar
6. Pal, R. and Gupta, M. P., Hydrology, J. 13 278280 (1971).10.1016/0022-1694(71)90229-0Google Scholar
7. Raats, P. A. C., Water Resour. Res. 11, 938942 (1975).10.1029/WR011i006p00938Google Scholar
8. Carnahan, C. L., Hydrology, J. 31, 125150 (1976).10.1016/0022-1694(76)90025-1Google Scholar
9. Reed, W. E., Geophys., J. Res. 75, 415430 (1970).Google Scholar
10. Hanshaw, B. B. and E-An Zen, , Geol. Soc. Amer. Bull. 76, 13791386 (1965).10.1130/0016-7606(1965)76[1379:OEAOF]2.0.CO;2CrossRefGoogle Scholar
11. Greenberg, J. A. and Mitchell, J. K. in: Aquitards in the Coastal Ground Water Basin of Oxnard Plain, Ventura County, Bulletin No. 63-4 (State of California, The Resources Agency, Department of Water Resources 1971) pp. 129141.Google Scholar
12. Fitts, D. D., Nonequilibrium Thermodynamics (McGraw-Hill, New York 1962).Google Scholar
13. DeGroot, S. R. and Mazur, P., Non-equilibrium Thermodynamics (North- Holland, Amsterdam 1969).Google Scholar
14. Katchalsky, A. and Curran, P. F., Nonequilibrium Thermodynamics in Biophysics (Harvard University Press, Cambridge 1967).Google Scholar
15. Onsager, L., Phys. Rev. 37, 405426 (1931); 38, 22652279 (1931).10.1103/PhysRev.37.405Google Scholar
16. Miller, D. G. in: Foundations of Continuum Thermodynamics, Delgado Domingos, J. J., Nina, M. N. R., and Whitelaw, J. H., eds. (MacMillan Press, London 1974) pp. 185214.Google Scholar
17. Wang, J. S. Y., Mangold, D. C., and Tsang, C. F., Mat. Res. Soc. Symp. Proc. 15, 531538 (1983).10.1557/PROC-15-531Google Scholar
18. Hodges, F. N. in: Engineered Barrier Development for a Nuclear Waste Repository in Basalt: An Integration of Current Knowledge, Report RHO-BWI-ST-7, Smith, M. J. et al. (Rockwell International 1980) pp. 2-105–-2-133.Google Scholar
19. Srivastava, R. C. and Avasthi, P. K., J.Hydrology 24, 111120 (1975).10.1016/0022-1694(75)90145-6CrossRefGoogle Scholar
20. Letey, J. and Kemper, W. D., Soil Sci. Soc. Amer. Proc. 33. 2529 (1969).10.2136/sssaj1969.03615995003300010012xGoogle Scholar
21. Thornton, E. C. and Seyfried, W. E., Science 220, 11561158 (1983).10.1126/science.220.4602.1156Google Scholar