Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:10:50.593Z Has data issue: false hasContentIssue false

Thermodynamic Constraints for the In Situ MOCVD Growth of Superconducting Tl-Ba-Ca-Cu-O Thin Films

Published online by Cambridge University Press:  15 February 2011

William L. Holstein*
Affiliation:
DuPont Central Research and Development, Experimental Station, P. O. Box 80304, Wilmington, DE 19808-0304
Get access

Abstract

In spite of several attempts, superconducting Tl-Ba-Ca-Cu-O thin films have not been successfully prepared in situ by metal organic chemical vapor deposition (MOCVD). Preparation of a phase by MOCVD requires that it be thermodynamically stable with respect to its decomposition into volatile species and other condensed phases. For MOCVD growth of Tl-Ba- Ca-Cu-O compounds in the presence of oxygen from reagents containing only C-H or C-H-O ligands, Tl2O(g) and TIOH(g) exhibit appreciable volatility. If reagents with ligands containing fluorine are used, the formation of volatile TIF(g) must also be considered. Thermodynamic data for these materials are compiled, and thermodynamic relationships between these gases, H2O(g) and HF(g) are established. The thermodynamic stability of TIOH(g) and TIF(g) makes the in situ growth of Tl-Ba-Ca-Cu-O compounds by MOCVD more difficult than their in situ growth by physical vapor deposition processes, for which Tl2O(g) is the only volatile TI-containing species present.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Leskelä, M., Mölsä, H. and Niinistö, L., Supercond. Sci. Technol. 6, 627 (1993).Google Scholar
2. Zawadski, P. A., Tompa, G. S., Norris, P. E., Chern, C. S., Caracciolo, R., and Kear, B. H., J. Electron. Mater. 19, 357 (1990).Google Scholar
3. Matsuno, S., Uchikawa, F., and Yoshizaki, K., Japn. J. Appl. Phys. 29, L947 (1990).Google Scholar
4. Zhang, J., Zhao, J., Marcy, H. O., Tonge, L. M., Wessels, B. W., Marks, T. J., and Kannewurf, C. R., Appl. Phys. Lett. 54, 1166 (1989).Google Scholar
5. Endo, K., Hayashida, S., Ishiai, J., Matsuki, Y., Ikedo, Y., Misawa, S., and Yoshida, S., Japn. J. Appl. Phys. 29, L294 (1990).Google Scholar
6. Hiskes, R., DiCarolis, S. A., Jacowitz, R. D., Lu, Z., Feigelson, R. S., Route, R. K., and Young, J. L., J. Crystal Growth 128, 781 (1993).Google Scholar
7. Holstein, W. L., Parisi, L. A., Shen, Z.-Y., Wilker, C., Brenner, M. S., and Martens, J. S., J. Supercond. 6, 191 (1993).Google Scholar
8. Zhang, K., Boyd, E. P., Kwak, B. S., Wright, A. C., and Erbil, A., Appl. Phys. Lett. 55, 1258 (1989).Google Scholar
9. Richeson, D. S., Tonge, L. M., Zhao, J., Zhang, J., Marcy, H. O., Marks, T. J., Wessels, B. W., and Kannewurf, C. R., Appl. Phys. Lett. 54, 2154 (1989).Google Scholar
10. Malandrino, G., Richeson, D. S., Marks, T. J., DeGroot, D. C., Schindler, J. L., and Kannewurf, C. R., Appl. Phys. Lett. 58, 182 (1991).CrossRefGoogle Scholar
11. Hamaguchi, N., Gardiner, R., Kirlin, P. S., Dye, R., Hubbard, K. M., and Muenchausen, R. E., Appl. Phys. Lett. 57, 2136 (1990).Google Scholar
12. Hamaguchi, N., Gardiner, R., and Kirlin, P. S., Appl. Surf. Science 48/49, 441 (1991).Google Scholar
13. Hamaguchi, N., Boerstler, R., Gardiner, R., and Kirlin, P., Physica C 185–189, 2023 (1991).Google Scholar
14. Face, D. W. and Nestlerode, J. P., Appl. Phys. Lett. 61, 1838 (1992).Google Scholar
15. Face, D. W. and Nestlerode, J. P., IEEE Trans. Appl. Supercond. 3, 1516 (1993).Google Scholar
16. Holstein, W. L., J. Phys. Chem. 97, 4224 (1993).Google Scholar
17. Cubicciotti, D., and Keneshea, F. J., J. Phys. Chem. 71, 808 (1967).Google Scholar
18. Pankratz, L. B., Thermodynamic Properties of Elements and Oxides, Bulletin No. 672, U. S. Bureau of Mines (1982).Google Scholar
19. Holstein, W. L., J. Chem. Thermodynamics 25, 1287 (1993).Google Scholar
20. Kana'an, A. S. J. Chem. Thermodynamics 17, 233 (1985).CrossRefGoogle Scholar
21. Keneshea, F. and Cubicciotti, D., J. Phys. Chem. 69, 3910 (1965); 71, 1958 (1967).Google Scholar
22. Cubicciotti, D. and Eding, H., J. Chem. Eng. Data 10, 343 (1965); 12, 284 (1967).Google Scholar
23. Pankratz, L. B., Thermodynamic Properties of the Halides, Bulletin No. 674, U. S. Bureau of Mines (1984).Google Scholar
24. Aselage, T. L., Venturini, E. L., and van Deusen, S. B., unpublished.Google Scholar
25. Holstein, W. L., Prog. Crystal Growth Character. 24, 111 (1992).Google Scholar