No CrossRef data available.
Published online by Cambridge University Press: 22 August 2012
Graphene oxide holds great promise for future applications in nano-technology. The chemistry of this material is not well understood. This understanding is crucial to enable future applications of graphene oxide. In this study, experiments and density functional theory calculations are combined to elucidate the chemical properties of multilayer graphene oxide obtained by oxidizing epitaxial graphene grown on silicon carbide via the Hummers method. This study shows that at room temperature as prepared graphene oxide films exhibit a uniform and homogeneous structure, include a minimal amount of edges and holes, and have an oxidation ratio of about 0.44. The comparison with density-functional calculations shows that graphene oxide includes a minimal amount of intercalated water molecules and well-defined fractions of epoxide and hydroxyl groups.