Published online by Cambridge University Press: 21 March 2011
A thermochemical approach was suggested for treating and conditioning specific streams of radioactive wastes for example spent ion exchange resins (IER), mixed, organic or chlorine-containing radioactive waste (PVC, etc.). Conventional thermal treatment of such waste encounters serious problems concerning complete destruction of organic molecules and possible emissions of radionuclides, heavy metals and chemically hazardous species. The thermochemical treatment uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. The composition of the PMF is designed in such a way as to minimize the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the ash residue. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. Previous preliminary work demonstrated the feasibility of applying the thermochemical approach to treatment of spent IER using PMF. Herein, the results are presented of theoretical and experimental studies to define the optimal PMF composition as well as the PMF/waste ratio.