Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:41:04.116Z Has data issue: false hasContentIssue false

Thermo- and chemo-electrical behavior of carbon nanotube filled co-continuous conductive polymer nanocomposites (CPC) to develop amperometric sensors

Published online by Cambridge University Press:  01 February 2011

Jianbo Lu
Affiliation:
[email protected], European University of Brittany, LIMATB, lorient, France
Mickaël Castro
Affiliation:
[email protected], European University of Brittany, LIMATB, Lorient, France
Bijandra Kumar
Affiliation:
[email protected], University of Brittany, LIMATB, Lorient, France
Jean-François Feller
Affiliation:
[email protected], European University of Brittany, LIMATB, Lorient, France
Get access

Abstract

The conductive polymer nanocomposite (CPC) of multiwall carbon nanotubes (MWNT) filled Polycaprolactone (PCL) was formulated by melt mixing method. PCL based conductive phase served as disperse phase, blended with polypropylene (PP) and polyamide 12 (PA12) respectively. The thermo- and chemo-electrical properties of mono- and bi-component CPC have been investigated independently. Results show that PP/PCL-CNT CPC is a good temperature sensor whereas no significant response was observed while exposing to toluene vapor. In contrast, PA12/PCL-CNT exhibits good vapor sensing capability instead of temperature sensor. It is assumed that PP phase prevents the diffusion of vapor molecules within PCL conductive phase. The vapor sensing results indicated that PP external matrix provides the CPC with higher barrier effects than PA12.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feller, J.F., Linossier, I., Grohens, Y., Mater. Lett. 57, 64 (2002).Google Scholar
2. Feller, J.F., Chauvelon, P., Linossier, I., Glouannec, P., Polym. Test. 22, 831 (2003).Google Scholar
3. Feller, J.F., Grohens, Y., Synthetic Metals, 154, 193 (2005).Google Scholar
4. Boiteux, G., Fournier, J., Issotier, D., Scytre, G., Marichy, G., Conductive thermoset composites: PTC effect, Synth. Met. 102, 1234 (1999).Google Scholar
5. Zeng, W., Zhang, M. Q., Rong, M. Z., Zheng, Q., Sens. Actuators B doi:10.1016/j.snb.2006.12.021.Google Scholar
6. Knite, M., Tupureina, V., Fuith, A., Zavickis, J., Teteris, V., Mater. Sci. Eng., C, doi:10.1016/j.msec.2006.08.016.Google Scholar
7. Boiteux, G., Mamunya, Ye.P., Lebedev, E.V., Adamczewski, A., Boullanger, C., Cassagnau, P., Seytre, G., Synth. Met. 157, 1071 (2007).Google Scholar
8. Zribi, K., Feller, J. F., Elleuch, K., Bourmaud, A., Elleuch, B., Polym. Adv. Technol. 17, 727 (2006).Google Scholar
9. Li, J. R., Xu, Ji. R., Zhang, M. Q., Rong, M. Z., Carbon 41, 2353 (2003).Google Scholar
10. He, X., Wang, L., Chen, X., J. Appl. Polym. Sci. 80, 1571 (2001).Google Scholar
11. Feller, J. F., J. Appl. Polym. Sci. 91 2151 (2004).Google Scholar
12. Zhang, M.Y., Xin, W.J, Chen, F., J. Appl. Polym. Sci. 62, 743 (1996).Google Scholar