Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T18:01:14.018Z Has data issue: false hasContentIssue false

Thermal Surface Treatment Using Intense, Pulsed Ion Beams

Published online by Cambridge University Press:  22 February 2011

R. W. Stinnett
Affiliation:
Sandia National Laboratories
R. G. Buchheit
Affiliation:
Sandia National Laboratories
F. A. Greulich
Affiliation:
Sandia National Laboratories
C. R. Hills
Affiliation:
Sandia National Laboratories
A. C. Kilgo
Affiliation:
Sandia National Laboratories
D. C. Mclntyre
Affiliation:
Sandia National Laboratories
J. B. Greenly
Affiliation:
Cornell University
M. O. Thompson
Affiliation:
Cornell University
G. P. Johnston
Affiliation:
University of New Mexico
D. J. Rej
Affiliation:
Los Alamos National Laboratory
Get access

Abstract

Surface treatment experiments using intense pulsed ion beams have demonstrated new capabilities for materials surface treatment. These experiments have confirmed corrosion resistance, surface hardening, amorphous layer and nanocrystalline grain size formation, metal surface polishing, controlled melt of ceramic surfaces, surface cleaning and oxide layer removal by rapid melting and resolidification. Deposition of beam energy in a thin surface layer allows melting of the layer with relatively small energies (1-10 J/cm2) and allows rapid cooling (109-1010 K/sec) and resolidification of the melted layer by thermal diffusion into the underlying substrate. At higher intensities (≥20 J/cm2), this technology can provide rapid ablation of material from targets followed by rapid, congruent deposition of polycrystalline thin films on substrates. This technology uses high energy pulsed (40–400 ns) ion beams to directly deposit energy in the top 2–20 micrometers of the surface of materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Breinan, E. M., Kear, B. H., Greenwald, L. E., and Banas, C. M.,“Laser Glazing, a New Process for Production and Control of Rapidly Chilled Metallurgical Microstructures,” Lasers in Modern Industry, (Dearborn, Michigan 1979), 147166.Google Scholar
2 Bergmann, H.-W., Mordike, B. L.,“Laser and Electron-Beam Melted Amorphous Layers,” J. Mat. Sci., (1981). 863869.Google Scholar
3 Fastow, R., “Pulsed Ion Beam Surface Modification of Materials”, Ph.D. thesis, Cornell University, 1985.Google Scholar
4 Rastow, R., Maron, Y., and Mayer, J.,“Pulsed ion beam melting of silicon”, (Phys. Reb. B, 31, 893(1985)Google Scholar
5 Remnev, G. E., and Shulov, V. A.,“Practical Applications of High-Power Ion Beams,” 9th International Conference on High-Power Particle Beams, Washington, D.C., 5/25–29, 1992.Google Scholar
6 Chistjakov, S. A., Gagarin, A. M., Koishibaev, R. G., Rjuchkov, Yu Yu, Kuzminikh, V. A., Milutin, V. M., Pirogov, V. A., Perov, V. A., Pogrebnjak, A. D., Plotnik, S. V., Remnev, G. E., Rusin, Yu G., and Janovskii, V. P.,“Ion Mixing of Near Surface Layers in Au-Cu, Cu-Mo Systems Irradiated by HPIB,” Physics Letters. Vol. 131, No. 1, 8/1, 1988, 7377.Google Scholar
7 Kutuzov, V. L., Ovsyannikov, M. Yu., Romanov, I. G., Pogrebnk, A. D., and Remnev, G. E.,“Mechanical and Frictional Properties of Tool Steels Exposed to HPIB Irradiation,” Mechanical and Frictional Properties of Tool Steels. 11/8, 1988, 361364.Google Scholar
8 Shimotori, Y., Yokoyama, M., Isobe, H., Harada, S., Masugata, K., Yatsui, K., JAP 63, 968 (1988).Google Scholar
9 TRIM-90.05, Ziegler, J. and Biersack, J. Google Scholar
10 Harjes, H. C., Penn, K. J., Reed, K. W., McClenahan, C. R., Laderach, G. E., Wavrik, R. W., Adcock, J. L., Butler, M. E., Mann, G. A., Pena, G. E., Weber, G. J., VanDeValde, D., Martinez, L. E., Muirhead, D., Kiekel, P. D., Johnson, D. L., Neau, E. L., “Initial results from the RHEPP module”, Proc. 9th Int. Conf. on High Power Particle Beams. Washington D.C., May 25-29, 1992, 333340.Google Scholar
11 Greenly, J. B., Ueda, M., Rondeau, G. D. and Hammer, D. A., “Magnetically Insulated Ion Diode with a Gas-Breakdown Plasma Anode,” J. Appl. Phys 63, 1872 (1988).Google Scholar
12 Greenly, J. B., Brissette, L., Dunning, A., Glidden, S. C., Hammer, D. A. and Noonan, W. A., “Plasma Anode Ion Diode Research at Cornell: Repetitive Pulse and 0.1 TW Single-Pulse Experiments,” Proceedings of the 8th Intl. Conf. on High Power Particle Beams, Breizman, B. N. and Knyazev, B. A., Eds., Novosibirsk, 1990 (World Scientific), p. 199.Google Scholar
13 Noonan, W. A., Ph.D. thesis, Cornell University, 1993.Google Scholar
14 Ueda, M., Greenly, J. B., Rondeau, G. D. and Hammer, D. A., Rev. Sci. Instr. 64 (10), 2737 (1993).Google Scholar
15 Rondeau, G., Ph.D. Thesis, Cornell University, 1989.Google Scholar
16 Scofield, J. H., J. Electron Spectroscopy 8, 129 (1976).Google Scholar
17 Rej, D. J., Bartsch, R. R., Davis, H. A., Fael, R. J., Gautier, D. C., Greenly, J. B., Henins, I., Linton, T. W., Muenchausen, R. E., Waganaar, W. J., “ Intense Ion Beam Research at Los Alamos”, Proceedings of the 9th Intl. Conf. on High-Power Beams, Mosher, David and Cooperstein, Gerald, Eds., Washington D. C, 1992 (NTIS PB92-206168)Google Scholar