Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T11:55:08.072Z Has data issue: false hasContentIssue false

Thermal stability of nickel-cobalt multilayer silicide

Published online by Cambridge University Press:  01 February 2011

Kil Jin Han
Affiliation:
[email protected], Korea University of Technology and Education, Material engineering, Ga Jeon, Cheon-An, Chung nam, 330708, Korea, Republic of
Yu Jung Cho
Affiliation:
[email protected], Korea, Republic of
Soon Young Oh
Affiliation:
[email protected], Chungnam National University, Electronics Engineering, Korea, Republic of
Yong Jin Kim
Affiliation:
[email protected], Korea, Republic of
Won Jae Lee
Affiliation:
[email protected], Korea, Republic of
Hi Deok Lee
Affiliation:
[email protected], Korea, Republic of
Yeong-Cheol Kim
Affiliation:
[email protected], Korea, Republic of
Get access

Abstract

In this study, we have investigated the structure of nickel-cobalt silicide to understand its behavior at high temperature. Nickel-cobalt silicide was formed after two-step RTP at 500°C and 700°C respectively. We could observe by TEM that nickel-cobalt silicide consists of a structure which seems to be a Ni-Co-Si ternary phase. No nickel silicide phases and cobalt silicide phases were detected in nickel-cobalt silicide by XRD. From XPS depth profile, we could confirm that there is a cobalt composition gradient along the silicide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Muraka, S. P., Fraser, D. B.: J. Appl. Phys. 51, 342 (1980).10.1063/1.327378Google Scholar
2. Maex, K.: Appl. Surf. Sci. 53, 328 (1991).10.1016/0169-4332(91)90282-OGoogle Scholar
3. Lavoie, M. C., d'Heurle, F. M., Detavernier, C., and Cabral, C. Jr: Microelectronic Engineering 70, 144 (2003).10.1016/S0167-9317(03)00380-0Google Scholar
4. Chi, D. Z., Mangelinck, D., Lahiri, S. K., Lee, P. S., and Pey, K. L.: Appl. Phys. Lett. 78, 3256 (2001).10.1063/1.1374496Google Scholar
5. Choi, C. J., OK, Y. W., Seong, T. Y. and Lee, H. D.: Jpn J. Appl. Phys. Pt. 141, 1969 (2002).10.1143/JJAP.41.1969Google Scholar
6. Ma, J. S., Tweet, D. J., Ono, Y., Stecker, L. and Hsu, S. T.: Mater. Res. Symp. Proc. 670, 691 (2001).Google Scholar
7. Cheng, L. W., Cheng, S. L., Chen, J. Y., Chen, L. J. and Tsui, B. Y.: Thin Solid Films 335, 412 (1999).10.1016/S0040-6090(99)00546-5Google Scholar
8. Yun, J. G., Oh, S. Y., Huang, B. F., Ji, H. H., Kim, Y. G., Park, S. H., Lee, H. S., Kim, D. B., Kim, U. S., Cha, H. S., Hu, S. B., Lee, J. G., Baek, S. K., Hwang, H. S., and Lee, H. D.: IEEE Electron device letters, 26, 90 (2005).Google Scholar