Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:49:44.001Z Has data issue: false hasContentIssue false

Thermal Reactor Synthesis of Nanoscale Ceramic Powders using Organosilazane Aerosols

Published online by Cambridge University Press:  25 February 2011

Tongsan D. Xiao
Affiliation:
The University of Connecticut, Institute of Materials Science, Department of Metallurgy, U-136, Storrs, CT 06268
Peter R. Strutt
Affiliation:
The University of Connecticut, Institute of Materials Science, Department of Metallurgy, U-136, Storrs, CT 06268
Kenneth E. Gonsalves
Affiliation:
The University of Connecticut, Institute of Materials Science, Department of Metallurgy, U-136, Storrs, CT 06268
V. Shankar
Affiliation:
The University of Connecticut, Institute of Materials Science, Department of Metallurgy, U-136, Storrs, CT 06268
Get access

Abstract

This investigation involves the thermal conversion of an organosilazane precursors into ultrafine ceramic particles. In this process, aerosols of a reactive organosilazane precursor, [CH3SiHNH]n n = 3 or 4, are injected into a hot furnace to obtain Si3N4/SiC ceramic powders. One critical feature examined in this process was the rapidity of the powder synthesis, in a reaction which involves (i) elimination of ligand groups, (ii) formation of ceramic species, and (iii) condensation of ceramic species into ultrafine ceramic particles. Accompanying studies a model has been formulated to determine the gas cooling rate and particle size.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Birringer, I. R., Gleiter, H., Encyclopedia of Materials Science & Engineering, Supp. Vol. 1, ed. Cahn, R. W., (Pergamon Press, Oxford, 1988), p. 339.Google Scholar
2. Eastman, J. & Seigel, R., Research & Development, p.56, Jan. 1989.Google Scholar
3. Gonsalves, K. E., Strutt, P. R., Xiao, T. D., & Klemens, P. G., J. Mat. Res. (In press).Google Scholar
4. Seyferth, D., Wiseman, G. H., J. Amer. Ceram. Soc. 67, c132 (1984).CrossRefGoogle Scholar
5. Partridge, J. P. & Strutt, P. R., SPIE, 669, 150, (1986).Google Scholar
6. Beaty, C. L., Ultrastructure Processing of Advanced Structural and Electronic Materials, ed. Hench, L. L., p.256, Noyes Data (1984).Google Scholar
7. Wong, J., Angell, C. A., Glass Structure by Spectroscopv, Marcel Dekker, (New York, 1976), p.547.Google Scholar
8. Rand, M. J., Roberts, J. F., J. Electrochem. Soc., 12, 446 (1973).CrossRefGoogle Scholar
9. Soraru, G. D., Florence, Bonneau, Mackenzie, T. D., J. Mater. Sci., 25, 3886(1990).CrossRefGoogle Scholar
10. Stewart, R. M., Dando, N. R., Seyferth, D., & Perrotta, A. J., Amer. Chem. Soc. Symp. 32 no. 3, 569(1991).Google Scholar
11. Babonneau, F., Livage, J., & Laine, R. M., Amer. Chem. Soc. Symp., 32 no. 3, 579(1991).Google Scholar
12. Carduner, K. R., Carter, R. O. III, Milberg, M. E., & Crosbie, M., Anal. Chem., 52, 2794(1987).CrossRefGoogle Scholar
13. Carduner, K. R., Carter, R. O. III, Rokosz, M. J., Peters, C., Crosbie, G. M., & Stiles, E. D., Chem. Mater. 1, 302(1989).CrossRefGoogle Scholar