Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:48:05.847Z Has data issue: false hasContentIssue false

Thermal Properties of Nanocrystalline Silver

Published online by Cambridge University Press:  25 February 2011

Xijun Wu
Affiliation:
Institute of Solid State Physics, Academia Sinica, 230031 Hefei, China
Hongfei Zhang
Affiliation:
Institute of Solid State Physics, Academia Sinica, 230031 Hefei, China
Xiaoying Qin
Affiliation:
Institute of Solid State Physics, Academia Sinica, 230031 Hefei, China
Lifang Chen
Affiliation:
Institute of Solid State Physics, Academia Sinica, 230031 Hefei, China
Guanzhong Wang
Affiliation:
University of Science and Technology of China, 230026 Hefei, China
Rongchuan Fang
Affiliation:
University of Science and Technology of China, 230026 Hefei, China
Get access

Abstract

The thermal properties of the nanocrystalline metal Ag (n-Ag), with the average grain size of 10 run, synthesized by an inert gas condensation and in situ compacting technique under different pressures of 0.2 to 1.5 GPa were studied. The thermal stable temperature for asprepared state is 373K, above which the grain growth appears at different rates. An exothermal peak and an endothermal peak occur on the DSC curves of the n-Ag. The enthalpy of both peaks are dependent upon the compacting pressure. Tht enhancement of the specific heat in going from the polycrystalline to the nanocrystalline state varies between 5.4% and 3.6% in the temperature range of 380K to 540K. The thermal diffusivity at room temperature increases with grain growth, and approaches to the corresponding value of the polycrystalline Ag.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gleiter, H., Prog. Mater. Sci., 33, 223 (1989).Google Scholar
[2] Rupp, J. and Birringer, R., Phys. Rev., B 36, 7888, (1987).Google Scholar
[3] Korn, D., Morsch, A., Birringer, R., Arnold, W. and Gleiter, H., J. Phys., 49, C5769 (1988).Google Scholar
[4] Hellstem, E., Fecht, H. J., Fu, Z. and Johnson, W. T., J. Appl. Phys., 65, 305 (1989).Google Scholar
[5] Lu, K., Wang, J. T. and Wei, W. D., Scripta Metall. Mater., 25, 619, (1991).Google Scholar
[6] Birringer, R. and Gleiter, H., Advances in Materials Science, Encyclopedia of Mater. Sci. and Eng. (ed. Cahn, R. W.), Pergamon Press, Oxford, p. 339 (1988).Google Scholar
[7] Seigel, R. W. and Hahn, H., Current Trends in Physics of Materials (edited by Yusouff, M.), World Scientific Publ. Co., Singapore, p. 403 (1987).Google Scholar
[8] Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z. Q. and Lu, T., J. Mater. Res., 3, 1367 (1988).Google Scholar
[9] Li, Z. Q., Ramasamy, S., Hahn, H. and Siegel, R. W., Mater. Lett., 6, 195 (1988).Google Scholar
[10] Siegel, R. W., Hahn, H., Ramasamy, S., Zongquan, L., Ting, L. and Gronsky, R., J. Physique, 49, C5681 (1988).Google Scholar
[11] Hahn, H., Logas, J. and Averback, R. S., J. Mater. Res., 5, 609 (1990).Google Scholar
[12] Wagner, W., Averback, R. S., Hahn, H. and Petry, W., J. Mater. Res., 6, 2193 (1991).Google Scholar
[13] Uchic, M., Hoefler, H. J., Flick, W. J., Tao, R., Kurath, P. and Averback, R. S., Scripta. Metall. Mater., 26, 791 (1992).Google Scholar
[14] Averback, R. S. and Hoefler, H. I., in Microcomposites and nanophase materials, eds. VanAken, D. C., Was, G. S. and Ghosh, A. K., TMS, p. 27 (1991).Google Scholar
[15] Birringer, R., Herr, U. and Gleiter, H., Suppl. Trans. Jap. Inst. Metals, 27, 43 (1987).Google Scholar
[16] Clarebrough, L. W., Hargreaves, M. E. and West, G. W., Proc. Roy, Soc., A 332, 252 (1955).Google Scholar