Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T09:12:15.237Z Has data issue: false hasContentIssue false

Thermal Nitridation of Silicon in Active Nitrogen

Published online by Cambridge University Press:  21 February 2011

R. V. Giridhar
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
K. Rose
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
Get access

Abstract

The dissociation of N2 in a microwave discharge has been studied using a gas phase titration between N(4S) and NO. SF6 added in small concentrations (20–100 ppm of N2) is shown to be an efficient catalyst for dissociating N2. Dissociation fractions [N]/[N2 ] of 4–5% have been obtained. The studies suggest how the partial pressure of atomic nitrogen can be maximized. These results have been applied to thermal nitridation of Si in active nitrogen. A strong dependence of the film thickness on the partial pressure of atomic nitrogen (PN) has been shown. In addition to the nitridation rate, the nitrogen fraction [N]/([N] + [O]) also increases with PN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lai, S. L., Proc. E.C.S. 81–5, 416 (1981).Google Scholar
2. Murarka, S. P., Chang, C. C. and Adams, A. C., J. Electrochem. Soc. 126, 996 (1979).CrossRefGoogle Scholar
3. Ito, T., Hijiya, S., Nozaki, T., Arakawa, H., Shinoda, M. and Fukukawa, Y., J. Electrochem. Soc. 125, 449 (1978).Google Scholar
4. Ito, T., Kato, I., Nozaki, T., Nakamura, T., and Ishikawa, H., Appl. Phys. Lett. 38, 370 (1981).Google Scholar
5. Nakamura, H., Kaneko, M., Matsumoto, S., Fujita, S. and Sasaki, A., Appl. Phys. Lett. 43, 691 (1983).Google Scholar
6. Chang, R. P. H., Chang, C. C. and Darach, S., Appl. Phys. Lett. 36, 999 (1980).Google Scholar
7. Hirayama, M., Matsukawa, T., Arima, H., Ohno, Y., Tsubouchi, N. and Nakata, H., J. Electrochem. Soc. 131, 663 (1984).Google Scholar
8. Giridhar, R. V. and Rose, K., Appl. Phys. Lett. 45, 578 (1984).Google Scholar
9. Wright, A. N. and Winkler, C. A., ”Active Nitrogen”, Academic Press, N.Y. (1968).Google Scholar
10. Wright, A. N. and Winkler, C. A., ”Active Nitrogen”, Academic Press, N.Y. (1968), p. 161.Google Scholar
11. Wright, A. N. and Winkler, C. A., ”Active Nitrogen”, Academic Press, N.Y. (1968), p. 75.Google Scholar
12. Young, R. A., Sharpless, R. L. and Stringham, R., J. Chem. Phys. 40, 117 (1964).Google Scholar
13. Blegen, K., “Equilibria and Kinetics in The Systems Si-N, Si-O-N and Si-C-0-N”, The Norwegian Institute of Technology, The University of Trondheim, Norway (1976).Google Scholar
14. Moslehi, M. M. and Saraswat, K. C., Proc. of the Symposium on Silicon Nitride Thin Insulating Films, ed. Kapoor, V. J. and Stein, H. J., Electrochemical Soc., Princeton, N.J. (1983), V 83–8, p. 324.Google Scholar
15. Eisele, K. M., J. Electrochem. Soc. 128, 123 (1981).Google Scholar
16. Hayafuji, Y. and Kajiwara, K., J. Electrochem. Soc. 129, 2102 (1982).Google Scholar