Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:59:01.393Z Has data issue: false hasContentIssue false

Thermal Donor Formation by the Agglomeration of Oxygen in Silicon

Published online by Cambridge University Press:  15 February 2011

U. GÖsele
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, Fed. Rep. Germany
T. Y. Tan
Affiliation:
IBM Th. J. Watson Research Center, Yorktown Heights, N. Y. 10598, USA
Get access

Abstract

We suggest that thermal donor formation in silicon involves fast-diffusing, gas-like molecular oxygen in dynamical equilibrium with atomic oxygen in interstitial position. We will discuss still remaining difficulties in understanding thermal donor formation in the light of recent experimental observations by Stavola, Patel, Kimerling and Treeland, indicating that the diffusivity of interstitial oxygen apparently depends on the thermal history of the silicon sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Patel, J.R. in: Semiconductor Silicon 1981, Huff, H.R., Kriegler, R.J., and Takeishi, Y. eds. (The Electrochem.Soc., Pennington 1981) p. 189.Google Scholar
2. Gösele, U., and Tan, T.Y., Appl.Phys. A 28, 79 (1982).Google Scholar
3. Helmreich, D., and Sirtl, E. in Semiconductor Silicon 1977, Huff, H.R., and Sirtl, E. eds. (The Electrochem. Soc., Princeton 1977) p. 626.Google Scholar
4. Fuller, C.S., Doleiden, F.H., and Wolfstirn, K., J.Phys.Chem.Solids 13, 187 (1960)Google Scholar
5. Kaiser, W., Phys. Rev. 105, 1751 (1957).Google Scholar
6. Corbett, J.W., McDonald, R.S., and Watkins, G.D., J.Phys.Chem.Solids 25,873(1964).Google Scholar
7. Stavola, M., Patel, J. R., Kimerling, L. C., and Freeland, P. E., Apl. Phys. Lett. 42, 73 (1983).Google Scholar
8. Gaworzewski, P., and Ritter, G., phys.stat.sol. (a) 67, 511 (1981).Google Scholar
9. Kaiser, W., Frisch, H.L., and Reiss, H., Phys.Rev. 112, 1546 (1958).CrossRefGoogle Scholar
10. Gaworzewski, P., and Schmalz, K., phys.stat.sol.(a) 55, 699 (1979).Google Scholar
11. Magee, T.J., and Furmann, B.K., J. Appl. Phys. 53, 1227 (1982).Google Scholar
12. Schaake, H.F., J. Appl. Phys. 53, 1227 (1982).CrossRefGoogle Scholar
13. Gaworzewski, P., and Riemann, H., Kristall und Technik 12, 189 (1977).CrossRefGoogle Scholar
14. Wruck, D., and Gaworzewski, P., phys.stat.sol (a) 56, 557 (1979).Google Scholar
15. Pavlov, P.V., Zorin, E.I., Tetelbaum, D.I., and Khokholov, A.J., phys.stat.sol. (a) 35, 11 (1976).Google Scholar
16. Brelot, A. in: Radiation Damage and Defects in Semiconductors, Whitehouse, J.E. ed. (Inst.Phys.Conf.Ser. No 16, 1973) p. 191.Google Scholar
17. Oehrlein, G.S., Lindström, J.L., Krafcsik, I., Jaworowski, A.E., Corbett, J.W. in[7].Google Scholar
18. Mikkelsen, J.C., Appl.Phys.Lett. 40, 336 (1982).Google Scholar