Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:50:05.606Z Has data issue: false hasContentIssue false

Thermal Desorption of Deuterium from GaN(0001)

Published online by Cambridge University Press:  21 March 2011

Y. Yang
Affiliation:
Georgia State University, Atlanta, GA
J. Lee
Affiliation:
Georgia State University, Atlanta, GA
B. D. Thoms
Affiliation:
Georgia State University, Atlanta, GA
D. D. Koleske
Affiliation:
Naval Research Laboratory, Washington, DC
R. L. Henry
Affiliation:
Naval Research Laboratory, Washington, DC
Get access

Abstract

The recombinative desorption of deuterium from GaN(0001) has been investigated using temperature programmed desorption (TPD) with variable heating rates. With a heating rate of 1°C/s, molecular deuterium desorption peaks at 410 C in agreement with related previous work. However, the shape of the curve indicates a secondary peak at around 280°C which is merged into the lower temperature shoulder of the dominant peak. By changing linear heating rate from 0.05 C/s to 8°C/s desorption peak temperatures from 380°C to 570°C were observed. Fitting to a pseudo-first-order desorption model results in a hydrogen desorption barrier, Ed, from surfaceof 1.1eV and a pre exponential factor, n, of 2 x 106s-1. Both are below expected values and are assumed to be due to a variation of desorption barrier heights. If a typical pre-exponential factor of 1 x 1013s-1is assumed, reanalysis of the desorption data produce a desorption barrier of 2.0 eV, in agreement with the existence of the surface adsorption barrier at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, R.F., Proc. IEEE 79, 702 (1991).Google Scholar
2. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
3. Mohammad, S.N., Salvador, A., and Morkoc, H., Proc. IEEE 83, 1306 (1995).Google Scholar
4. Yu, Z. Buczkowiski, S.L., Gilies, N. C., Myers, T. H. and Richards-Babb, M. R., Appl. Phys. Lett. 69, 2371 (1996).Google Scholar
5. Han, J., Ng, T.-B., Biefeld, R.M., Crawford, M. H. and Follstaedt, D.M., Appl. Phys. Lett. 71, 3114 (1997).Google Scholar
6. Koleske, D.D., Wickenden, A.E., Henry, R.L., Twigg, M. E., Culbertson, J.C. and Gorman, R.J., Appl. Phys. Lett. 73, 2018 (1996).Google Scholar
7. Piner, E. L., Behbehani, M. K., El, N. A.-Masry, Roberts, J. C., McIntosh, F. G. and Bedair, S. M., Appl. Phys Lett., 71, 2023 (1997).Google Scholar
8. Nakamura, S., Twasa, N, Senoh, M. and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
9. Moustaks, T. D. and Molnar, R., Mater. Res, Soc. Symp. Proc., 281, 753 (1993).Google Scholar
10. Nakamura, S., Mukai, Takashi, Senoh, masayuki and Iwasa, Naruhito, Jpn. J. Appl. Phys., 31, L139 (1992).Google Scholar
11. Neugerbauer, Jörg and Walle, Chris G. Van de, Phys. Rev. Lett., 75, 4452 (1995).Google Scholar
12. Götz, W., Johnson, N.M., Bour, D.P., McCluskey, M.D. and Haller, E.E., Appl. Phys. Lett., 69, 3725 (1996).Google Scholar
13. Pearton, S.J., Abernathy, C. R., Ren, F., Lothian, J. R., Wisk, P., Katz, A. and C. Constantine, Semicond. Sci. Technol. 8, 310 (1993).Google Scholar
14. Pearton, S. J. and Lee, J. W., in Semiconductors and Semimetals, Vol. 61, edited by Nickel, N. H., (Academic Press, San Diego, 1999), p. 471.Google Scholar
15. Shul, Randy J. in Processing of Wide Band Gap Semiconductors, edited by Pearton, S. J. and Lee, J. W. (Noyes Publications, New York, 2000), p. 263.Google Scholar
16. Bellitto, V.J., Thoms, B. D., Koleske, D.D., Wickenden, A. E. and Henry, R. L., Surf. Sci. 430, 80 (1999).Google Scholar
17. Bellitto, V. J., Yang, Y., Thoms, B. D., Koleske, D. D., Wickenden, A. E., Henry, R. L., Surf. Sci. Lett., 442, L1019 (1999).Google Scholar
18. Bellitto, V.J., Thoms, B. D., Koleske, D. D., Wickenden, A. E., Henry, R. L., Phys. Rev. B 60, 4816 (1999).Google Scholar
19. Wickenden, A.E., Gaskill, D. K., Koleske, D. D., Doverspike, K., Simons, S. D. and Chi, P. H.., Res. Mat. Soc. Symp. Proc. 395, 679 (1996).Google Scholar
20. Redhead, P. A., Vacuum 12, 203 (1962).Google Scholar
21. Garton, H., Proc. Phys. Soc. London Sect. A 64, 509 (1951).Google Scholar
22. Balasubramanian, K., Chem. Phys. Lett. 164(2,3), 231 (1989).Google Scholar
23. Lide, D. R., Ed., CRC handbook of Chemistry and Physics, (CRC Press, Boca Raton, FL, 1999), pp. 954.Google Scholar
24. Shekhar, R. and Jensen, K., Surf. Sci. Lett. 381, L581 (1997).Google Scholar
25. Chiang, C.-M., Gates, S. M., Bensaoula, A. and Schultz, J.A., Chem. Phys. Lett. 246, 275 (1995).Google Scholar
26. Sinniah, K., Sherman, M. G., Lewis, L. B., Weinberg, W. H., Yates, J. T. Jr, and Janda, K. C., Phys. Rev. Lett. 66, 567 (1989).Google Scholar
27. Bobrov, K., Shechter, H., Folman, M. and Hoffman, A., Diamond and relat. Mater. 7, 170 (1998).Google Scholar
28. Bobrov, K., Shechter, H., Folman, M. and Hoffman, A., Diamond and relat. Mater. 8, 705 (1999).Google Scholar
29. Su, C., Song, K.-J, Wang, Y. L., Lu, H.–L., Chuang, T.J. and Lin, J.-C., J. Chem. Phys 107, 7453 (1997).Google Scholar
30. Fichthorn, K.A. and Weinberg, W.H., Langmuir, 7, 2539 (1991).Google Scholar
31. Bartram, M. E. and Creighton, J. R., MRS Internet J. Nitride Semicond. Res, 4S1, G3.68 (1999).Google Scholar
32. Schulberg, M. T., Fox, C. A., Kubiak, G. D. and Stulen, R.H., J. Appl. Phys. 77, 3484 (1995).Google Scholar
33. Qi, H., Gee, P. E., Nguyen, T. and Hicks, R. F., Surface Science 323, 6 (1995).Google Scholar
34. Ihm, J., Chadi, D. J., and Joannopoulas, J., Phys. Rev. B, 27, 5119 (1983).Google Scholar
35. Qian, G. X., Martin, R. M. and Chadi, D. J., Phys. Rev. B, 38, 7649 (1988).Google Scholar
36. Larsen, P. K. and Chadi, D.J., Phys. Rev. B, 37, 8282 (1988).Google Scholar
37. Berkowitz, J., J. Chem. Phys. 89, 7065 (1988).Google Scholar