Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:22:56.952Z Has data issue: false hasContentIssue false

Thermal Dependence of Quantum Dot Solar Cells

Published online by Cambridge University Press:  01 February 2011

Cory Cress
Affiliation:
[email protected], Rochester Institute of Technology, Microsystems Engineering, 128 Autumn Chapel Way, Rochester, NY, 14624, United States
Seth M. Hubbard
Affiliation:
[email protected], Rochester Institute of Technology, NanoPower Research Laboratories, 85 Lomb Memorial Drive, Rochester, NY, 14623, United States
Christopher Bailey
Affiliation:
[email protected], Rochester Institute of Technology, NanoPower Research Laboratories, 85 Lomb Memorial Drive, Rochester, NY, 14623, United States
Ross Robinson
Affiliation:
[email protected], Rochester Institute of Technology, NanoPower Research Laboratories, 85 Lomb Memorial Drive, Rochester, NY, 14623, United States
Brian J. Landi
Affiliation:
[email protected], Rochester Institute of Technology, NanoPower Research Laboratories, 85 Lomb Memorial Drive, Rochester, NY, 14623, United States
Ryne P. Raffaelle
Affiliation:
[email protected], Rochester Institute of Technology, NanoPower Research Laboratories, 85 Lomb Memorial Drive, Rochester, NY, 14623, United States
Get access

Abstract

Various temperature dependent optoelectronic properties were measured for GaAs-based p-type / intrinsic / n-type (pin) solar cell devices containing 5-layers of InAs quantum dots (QDs) grown with strain-compensation layers. Curve fitting of the dark diode characteristics allowed for the temperature dependence of the saturation current and the ideality parameter to be determined. The resulting parameter values indicate high material quality. Air mass zero illuminated current density vs. voltage measurements were used to determine the temperature coefficients of the open circuit voltage, short circuit current, maximum power, and fill factor. A strong correlation between the temperature dependent quantum dot electroluminescence peak emission wavelength and the sub-GaAs bandgap spectral response was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cress, C. D., Hubbard, S. M., Landi, B. J., Wilt, D. M., and Raffaelle, R. P., Appl. Phys. Lett. 91, 183108/1–3 (2007).Google Scholar
2. Hubbard, S. M., Wilt, D. M., S. Bailey, D. Byrnes, and R. P. Raffaelle. Proceedings of the Proc. of the World Conference on Photovoltaic Energy Conversion(IEEE, 2006) p. 118121.Google Scholar
3. Marti, A., Antolin, A., Stanley, C. R., Farmer, C. D., Lopez, N., Diaz, P., Canovas, E., Linares, P. G., and Luque, A., Phys. Rev. Lett. 9724, 247701 (2006).10.1103/PhysRevLett.97.247701Google Scholar
4. Marti, A., Lopez, N., Antolin, E., Canovas, E., Luque, A., Stanley, C.R., Farmer, C.D., and Diaz, P., Appl. Phys. Lett. 90, 233510/1–3 (2007).10.1063/1.2747195Google Scholar
5. Laghumavarapu, R. B., Moscho, A., Khoshakhlagh, A., El-Emawy, M., Lester, L. F., and Huffaker, D. L., Appl. Phys. Lett. 90, 173125 (2007).10.1063/1.2734492Google Scholar
6. Luque, A., Martí, A., Lopez, N., Antolin, E., Canovas, E., Stanley, C., Farmer, C., and Diaz, P., J. Appl. Phys. 99, 094503/1–9 (2006).10.1063/1.2193063Google Scholar
7. Lever, P., Tan, H. H., and Jagadish, C., Appl. Phys. Lett. 95, 5710 (2004).Google Scholar
8. Nuntawong, N., Birudavolu, S., Hains, C. P., Huang, S., Xu, H., and Huffaker, D. L., Appl. Phys. Lett. 853050 (2004).Google Scholar
9. Mazzer, M., Barnham, K. W. J., Ballard, I. M., Bessiere, A., Ioannides, A., Johnson, D. C., Lynch, M. C., Tibbits, T. N. D., Roberts, J. S., Hill, G., and Calder, C., Thin Film Solids. 76, 511512 (2006).Google Scholar
10. Hubbard, S. M., Raffaelle, R. P., Robinson, R., Bailey, C., Wilt, D. M., Wolford, D., Maurer, W., and Bailey, S.. Proceedings of the Proceedings of the Materials Research Society (MRS, 2007) p. 1017E.10.1557/PROC-1017-DD13-11Google Scholar
11. Cotal, H. and Sherif, R.. Proceedings of the World Conference on Photovoltaic Energy Conversion(IEEE, 2006) p. 845848.Google Scholar
12. Hovel, H. J., Solar cells. Semiconductors and Semimetals, ed. Willardson, R.K. and Beer, A.C.. Vol. 11. 1975, New York: Academic. 166174.Google Scholar
13. Sze, S. M., Physics of Semiconductor Devices. 2nd ed. 1981, New York: Wiley.Google Scholar
14. Wei, G. and Forrest, S. R., Nano Lett. 71, 218222 (2007).10.1021/nl062564sGoogle Scholar