Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T09:02:54.681Z Has data issue: false hasContentIssue false

Thermal Conductivity Reduction Paths in Thermoelectric Materials

Published online by Cambridge University Press:  31 January 2011

Claude Godart
Affiliation:
[email protected], CNRS-ICMPE, CMTR, 2 rue H. Dunant, Thiais, 94320, France, +33-149781247, +33-149781203
Antonio Goncalves
Affiliation:
[email protected], ITN, Dep. Química, Lisboa, Portugal
Elsa Lopes
Affiliation:
[email protected], ITN, Dep. Química, Lisboa, Portugal
Benjamin Villeroy
Affiliation:
[email protected], CNRS-ICMPE, CMTR, Thiais, France
Get access

Abstract

The figure of merit ZT = sS2T/k (S the Seebeck coefficient, s and k the electrical and thermal conductivity respectively) is an essential element of the efficiency of a thermoelectric material for applications which convert heat to electricity or, conversely, electric current to cooling. From the expression of the power factor sS2 it was deduced that a highly degenerated semiconductor is necessary. In order to reduce the lattice part of the thermal conductivity, various mechanisms were tested in new thermoelectric materials and those had been the topics of several reviews. These include cage-like materials, effects of vacancies, solid solutions, complex structures (cluster, tunnel, …,), micro- and nano-structured systems, and more recently semiconducting glasses. We plan to review such aspects in the modern thermoelectric materials and include results of the very last years. Moreover, as micro- and nano-composites seem to be promising to increase ZT in large size samples, we will also briefly discuss the interest of spark plasma sintering technique to preserve the micro- or nano- structure in highly densified samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Slack, G. A., Thermoelectric Handbook- Ed. Rowe, DM- Chemical Rubber, Boca Raton FL, 407 (1995).Google Scholar
2 Caillat, T., Kisor, A., Lara, L., Jewell, A., and Sakamot, J., 23rd International Conference on Thermoelectrics- Adelaide, Australia 25 – 29 July 2004, (2004).Google Scholar
3 Callaway, J. and von, H. C. Baeyer, Phys. Rev. 120, 1149 (1960).Google Scholar
4 Klemens, P. G., Phys. Rev. 119, 507 (1960).Google Scholar
5 Worlock, J. M., Phys. Rev. 147, 636 (1966).Google Scholar
6 Sales, B. C., Chakoumakos, B. C., Mandrus, D., and Sharp, J. W., J. Solid State Chem. 146, 528 (1999).Google Scholar
7 Christensen, M., Abrahamsen, A. B., Christensen, N. B., Jyranyi, F., Andersen, N. H., Lefmann, K., Andraesson, J., Bahk, C. R. H., and Iversen, B. B., Nature Materials 7, 811 (2008).Google Scholar
8 Koza, M. M., Johnson, M. R., Viennois, R., Mutka, H., Girard, L., and Ravot, D., Nature Materials 7, 805 (2008).Google Scholar
9 Gougeon, P., Potel, M., and Gautier, R., Inorg. Chem. 43, 1257 (2004).Google Scholar
10 Potel, M., Gougeon, P., Merdrignac-Conanec, O., Lecroc, M., and Guilloux-Viry, M., Meeting of the French GDR “Thermoélectricité” - Juillet, Paris, (2008).Google Scholar
11 Gonçalves, A. P., Lopes, E. B., Godart, C., Alleno, E., and Rouleau, O., Portugese patent, (2006), Vol. 103351.Google Scholar
12 A. P. Gonçalves, Lopes, E. B., Alves, E., Barradas, N. P., Franco, N., Rouleau, O., and Godart, C., NATO ASI Series B “Properties and Applications of Thermoelectric Materials” Ed. Zlatic V., Pub. Springer, (2009), Vol. under press.Google Scholar
13 Zhang, S. N., He, J., Zhu, T. J., Zhao, X. B., and Tritt, T. M., J. Non-Cryst. Solids 355, 79 (2009).Google Scholar
14 Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).Google Scholar
15 Dresselhaus, M. S., Rohsenow Symposium on Future Trends of Heat Transfer, MIT, USA, May, (2003).Google Scholar
16 Dresselhaus, M. S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S. B., and Koga, T., Phys. Solid State 41, 679 (1999).Google Scholar
17 Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 16631 (1993).Google Scholar
18 Hicks, L. D., Harman, T. C., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 53, R10493 (1996).Google Scholar
19 Caylor, J. C., Coonley, K., Stuart, J., Colpitts, T., and Venkatasubramanian, R., Appl. Phys. Lett. 87, 023105 (2005).Google Scholar
20 Venkatasubramanian, R., Sivola, E., Colpitts, T., and O'Quinn, B., Nature 413, 597 (2001).Google Scholar
21 Yang, R., Chen, G., and Dresselhaus, M. S., Phys. Rev. B 72, 125418 (2005).Google Scholar
22 Ni, H. L., Zhao, X. B., Zhu, T. J., Ji, X. H., and Tu, J. P., J. Alloys Compd. 397, 317 (2005).Google Scholar
23 Hsu, K. F., Loo, S. L., Guo W., F., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G., Science 303, 818 (2004).Google Scholar
24 Bilc, D., Mahanti, S. D., Quarez, E., Hsu, K. F., Pcionek, R., and Kanatzidis, M. G., Phys. Rev. Lett. 93, 146403 (2004).Google Scholar
25 Lin, H., Bozin, E. S., Billinge, S. J. L., Quarez, E., and Kanatzidis, M. G., Phys. Rev. B 72, 174113 (2005).Google Scholar
26 Poudeu, P. F. P., D'Angelo, J., Downey, A. D., Short, J. L., Hogan, T. P., and Kanatzidis, M. G., Angew. Chem., Int. Ed. Engl. 45, 3835 (2006).Google Scholar
27 Androulakis, J., Lin, C. H., Kong, H. J., Uher, C., Wu, C. I., Hogan, T., Cook, B. A., Caillat, T., Paraskevopoulos, K. M., and Kanatzidis, M. G., J. Am. Chem. Soc. 129, 9780 (2007).Google Scholar
28 Androulakis, J., Hsu, K. F., Pcionek, R., Kong, H., Uher, C., D'Angelo, J.J., Downey, A., Hogan, T., and Kanatzidis, M. G., Advanced Materials 19, 1170 (2006).Google Scholar
29 Yang, S. H., Zhu, T. J., Sun, T., He, J., Zhang, S. N., and Zhao, X. B., Nanotechnology 19, 245707 (2008).Google Scholar
30 Armstrong, R. W., Faust J.W., J., and Tiller, W. A., J. Appl. Phys. 31, 1954 (1960).Google Scholar
31 Kusano, D. and Hori, Y., J. Jpn. Inst. Met. 66, 1063 (2002).Google Scholar
32 Chen, L. D., Shi, X., Huang, X. Y., and Bai, S. Q., 23rd International Conference on Thermoelectrics- Adelaide, Australia 25 – 29 July 2004, (2004).Google Scholar
33 Recknagel, C., Reinfried, N., Höhn, P., Schnelle, W., Rosner, H., Grin, Y. N., and Jasper, A. Leithe-, Science and Technology of Advanced Materials 8, 357 (2007).Google Scholar
34 Anno, H., Hokazono, M., Takakura, H., and Matsubara, K., 24th International Conference on Thermoelectrics- ICT2005, (2005).Google Scholar
35 Hokazono, M., Anno, H., and Matsubara, K., Mater. Trans. JIM 46, 1485 (2005).Google Scholar
36 Huang, X. Y., Xu, Z., Chen, L. D., and Tang, X. F., Key Eng. Mater. 240, 79 (2003).Google Scholar
37 Souma, T., Nakamoto, G., and Kurisu, M., 22nd International Conference on Thermoelectrics - ICT, (2003), p. 279.Google Scholar
38 Tani, J. and Kido, G., Physica B 364, 218 (2005).Google Scholar
39 Sugiyama, A., Kobayashi, K., Ozaki, K., Nishio, T., and Matsumoto, A., J. Jpn. Inst. Met. 62, 1082 (1998).Google Scholar
40 Noda, Y., Mizuno, K., Kang, Y. S., Niino, M., and Nishida, I. A., J. Jpn. Inst. Met. 63, 1448 (1999).Google Scholar
41 Yoneda, S., Ohta, E., Kaibe, H. T., Ohsugi, I. J., Shiota, I., and Nishida, I. A., Mater. Trans. JIM 42, 329 (2001).Google Scholar
42 Kim, K. H., Shim, S. H., Shim, K. B., Niihara, K., and Hojo, J., J. Am. Ceram. Soc. 88, 628 (2005).Google Scholar
43 Bérardan, D., Alleno, E., Godart, C., Benyakoub, H., Flandorfer, H., Rouleau, O., and Leroy, E., 24th International Conference on Thermoelectrics ICT2006,- Vienna, Austria- 6-10 Aug., (2006), p. 151.Google Scholar
44 Ni, H. L., Zhao, X. B., Karpinski, G., and Müller, E., J. Mater. Sci. 40, 605 (2005).Google Scholar
45 Martin, J., Nolas, G. S., Zhang, W., and Chen, L., Appl. Phys. Lett. 90, 222112 (2007).Google Scholar
46 Zhao, X. Y., Shi, X., Chen, L. D., Zhang, W. Q., Bai, S. Q., Pei, Y. Z., and Li, X. Y., Appl. Phys. Lett. 89, 092121 (2006).Google Scholar
47 Li, J. F. and Liu, J., Phys. Status Solidi A 203, 3768 (2006).Google Scholar
48 Cui, J. L., Mater. Lett. 57, 4074 (2003).Google Scholar
49 Shi, X., Chen, L. D., Bai, S. Q., Huang, X. Y., and Tang, X. F., 21st International Conference on Thermoelectrics- Long Beach, California, USA - Aug. 25-29, (2002), p. 68.Google Scholar
50 Zhang, J. X., Lu, Q. M., Zhang, X., and Wei, Q., 24th International Conference on Thermoelectrics ICT2006,- Vienna, Austria- 6-10 Aug., (2006), p. 148.Google Scholar
51 Mikami, M. and Kobayashi, K., J. Alloys Compd. 466, 530 (2008).Google Scholar
52 Chen, L. D., Huang, X. Y., Zhou, M., Shi, X., and Zhang, W. B., J. Appl. Phys. 99, 064305 (2006).Google Scholar
53 Böttner, H., Ebling, D. G., Jacquot, A., König, J., Kirste, L., and Schmidt, J., Physica Status Solidi RRL 1, 235 (2007).Google Scholar
54 Fan, J. F., Chen, L. D., Bai, S. Q., and Shi, X., Mater. Lett. 58, 3876 (2004).Google Scholar
55 Zhao, D., Li, X., He, L., Jiang, W., and Chen, L., Intermetallics 17, 136 (2009).Google Scholar
56 Horii, S., Matsubara, I., Sano, M., Fujie, K., Suzuki, M., Funahashi, R., Shikano, M., Shin, W., Murayama, N., Shimoyama, J., and Kishio, K., Jpn. J. Appl. Phys., Part 1 42, 7018 (2003).Google Scholar