Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T07:15:18.365Z Has data issue: false hasContentIssue false

Thermal Annealing Influence on Magnetic and Structural Properties of Cu56Ga28Mn16 Microwires

Published online by Cambridge University Press:  31 January 2011

Víctor Prida
Affiliation:
[email protected], Universidad de Oviedo, Fisica, Calvo Sotelo s/n, Oviedo, Asturias, 33007, Spain
Victor Vega
Affiliation:
[email protected], Universidad de Oviedo, SCTs, Oviedo, Asturias, Spain
Jose Sanchez Llamazares
Affiliation:
[email protected], Universidad de Oviedo, Fisica, Calvo Sotelo s/n, Oviedo, Asturias, 33007, Spain
Maria L Sanchez
Affiliation:
[email protected], Universidad de Oviedo, Fisica, Calvo Sotelo s/n, Oviedo, Asturias, 33007, Spain
Jesus D Santos
Affiliation:
[email protected], Universidad de Oviedo, Fisica, Calvo Sotelo s/n, Oviedo, Asturias, 33007, Spain
Blanca Hernando
Affiliation:
Lluisa Escoda
Affiliation:
[email protected], Universidad de Girona, Girona, Cataluña, Spain
Joan J Suñol
Affiliation:
[email protected], Universidad de Girona, Girona, Cataluña, Spain
Carlos Garcia
Affiliation:
[email protected], MIT, Materials Science & Engineering, Cambridge, Massachusetts, United States
Caroline Ross
Affiliation:
[email protected], United States
Get access

Abstract

We report on the crystalline structure, morphology and thermomagnetic properties of glass-coated magnetic microwires with Cu56Ga28Mn16 composition, as well as the thermal annealing influence on its magneto-structural properties. As-cast CuMnGa microwires exhibit a majority cubic B2 phase, and upon annealing at temperatures up to 573 K a new hexagonal phase appears coexisting with the cubic B2 major phase. Thermal annealing treatments also shift the Curie temperature about 150 K with respect to the one for the as-cast microwire. Furthermore, the signature of a structural phase transition is observed for the microwire annealed at 523 K

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, Y., Zhang, X., Dunard, D.C., Schuh, C.A., Appl. Phys. Lett. 95, 171906 (2009).Google Scholar
2 Ilyn, M. I., Zhukova, V., Santos, J. D., Sánchez, M. L., Prida, V. M., Hernando, B., Larin, V., González, J., Tishin, A. M., Zhukov, A., Phys. Status Solidi A 205, 1378 (2008).Google Scholar
3 Antonov, A., Borisov, V., Borisov, O., Prokoshin, A., Usov, A., J. Phys. D: Appl. Phys. 33, 1161 (2000).Google Scholar
4 Okawa, K., Koeda, N., Sutou, Y., Omori, T., Kainuma, R., Ishida, K., Mater. Trans. 45, 2780 (2004).Google Scholar
5 Kushima, T., Tsuchiya, K., Sho, Y., Yamada, T., Todaka, Y., Umemoto, M., Mater. Sci. Forum. 539-543, 3157 (2007).Google Scholar
6 Suñol, J.J., Escoda, Ll., García, C., Prida, V.M., Vega, V., Sánchez, M.L., SánchezLlamazares, J.L., Hernando, B., Solid State Phenomena 152-153, 79 (2009).Google Scholar
7 Garcia, C., Prida, V.M., Vega, V., Sánchez-Llamazares, J.L., Suñol, J.J., Escoda, Ll., Sánchez, M.L., Ribot, I., Hernando, B., Phys. Status Solidi A 206, 644 (2009).Google Scholar
8 Zhukov, A., Adv. Funct. Mater. 16, 267 (2006).Google Scholar
9 Vázquez, M., in: Advanced Magnetic Microwires, in Handbook of Magnetism and Advanced Magnetic Materials, edited by Kronmuller, H. and Parkin, S., volume 1, John Wiley & Sons (2007), p. 2193.Google Scholar
10 Kainuma, R., Satoh, N., Liu, X.J., Ohnuma, I., Ishida, K., J. Alloys Compounds 266, 191 (1998).Google Scholar