Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T19:09:02.909Z Has data issue: false hasContentIssue false

Thermal Annealing Effects in the Strained (Ga, In) as Layer

Published online by Cambridge University Press:  26 February 2011

Y-W. Choi
Affiliation:
State University of New York at Buffalo, Dept. of Electrical and Computer Engineering, Bonner Hall, Amherest, NY 14260
H.M. Kim
Affiliation:
State University of New York at Buffalo, Dept. of Electrical and Computer Engineering, Bonner Hall, Amherest, NY 14260
G. Rajeswaran
Affiliation:
Eastman Kodak Company, Corporate Research Laboratories Rochester, NY 14650
Get access

Abstract

We have studied the ternary (Ga, In)As layers in GaInAs/GaAs heterostructure systems after conventional furnace annealing or rapid thermal annealing (RTA). Measurement was done by the double crystal X-ray rocking curve technique (XRC) and the Auger Electron Spectroscopy technique (AES). X-ray rocking curves show an asymmetric shoulder in the GaInAs epilayer peak indicating a smaller lattice spacing near the surface. Epilayer peaks of encapsulated samples also show an asymmetric shoulder which is perhaps due to the tensile stress in the epilayer caused by the encapsulant film. AES depth profiles for 600°C, 15 minutes proximity annealed sample show that the concentrations of Ga, In, and As are not uniform over about 60 nm depth, showing a Garich and In, As-deficient surface. For 700°C, 20 seconds a RTA treated sample shows no such non-uniformity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

l. Gallant, M., Puetz, N, Zemel, A. and Shepherd, F. R., Appl. Phys. Lett., 52(9), 733 (1988)CrossRefGoogle Scholar
2. Rosenberg, J. J., Benlamri, M., Kirchner, P. D., Woodall, J. M., and Pettit, G. D., IEEE Electron. Device Lett., EDL–6, 491 (1985)CrossRefGoogle Scholar
3. Toyoshima, H., Ando, Y., Okamoto, A., and Itoh, T., Jpn. J. Appl. Phys., 25, L786 (1986)CrossRefGoogle Scholar
4. Ramberg, L. P., Enquist, P. M., Chen, Y. K., Najjar, F. E., Eastman, L. F., Fitzgerald, E. A., and Kavanagh, D. L., J. Appl. Phys., 61,1234 (1987)CrossRefGoogle Scholar
5. Anderson, N. G., Lo, Y. C., and Kolbas, R. M., Appl. Phys. Lett., 49,758 (1986)CrossRefGoogle Scholar
6. Fekete, D., Chan, K. T., Ballantyne, J. M., and Eastman, L. F., Appl. Phys. Lett., 49, 1659 (1986)CrossRefGoogle Scholar
7. Kim, S. J., Guth, G., Vella-Coleiro, G. P., Seabury, C. W., Sponsler, W. A. and Rhoades, B. J., IEEE Electron. Device Lett., EDL–9, 447 (1988)CrossRefGoogle Scholar
8. Oberstar, J. D., Streetman, B. G., Thin Solid Films, 103, 17 (1983)CrossRefGoogle Scholar
9. Farley, C. W., Kim, T. S., Streetman, B. G., Lareau, R. T., and Williams, P., Thin Solid Films, 146, 221 (1987)CrossRefGoogle Scholar
10. Wie, C. R., Kim, H. M., and Lau, K. M., SPIE Proc, 877, 41 (1988)CrossRefGoogle Scholar
ll. Wie, C. R., Tombrello, T. A., and Vreeland, T. Jr J. Appl. Phys., 59(11), 3743 (1986)CrossRefGoogle Scholar
12. Foxon, C. T., Harvey, J. A., and Joyce, B. A., J. Phys. Chem. Solids 34 1963 (1973)CrossRefGoogle Scholar
13. Farrow, R. F. C., J. Phys. D, 7, 2436 (1974)CrossRefGoogle Scholar
14. Wie, C. R., Nucl. Instr. Meth. B, in press (1988)Google Scholar
15. Wie, C. R., Xie, K., Kim, H. M., Chen, J. F., Burns, G., Dacol, F. H., Pettit, G. K., and Woodall, J. M., SPIE Proc., 946, 155 (1988)CrossRefGoogle Scholar