Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T02:36:08.539Z Has data issue: false hasContentIssue false

Thermal Annealing Effect on P3HT:PCBM Free Polarons Lifetime and Charge Transport

Published online by Cambridge University Press:  22 August 2011

Kejia Li
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904, U.S.A
Yang Shen
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904, U.S.A
Lijun Li
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904, U.S.A
Petr Khlyabich
Affiliation:
Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089, U.S.A
Ellen S. Reifler
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904, U.S.A
Barry C. Thompson
Affiliation:
Department of Chemistry, University of Southern California, 837 Bloom Walk, Los Angeles, CA 90089, U.S.A
Joe C. Campbell
Affiliation:
Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904, U.S.A
Get access

Abstract

A transient response technique has been employed to investigate the lifetime of free polarons in bulk heterojunction blends of regioregular poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methylester (PCBM) at different annealing temperatures. Device efficiency and charge mobility were also measured. The longest lifetime, ∼ 1.5 microseceonds, was achieved for an annealing temperature of 140˚C; this represents a 2.5 x increase in lifetime relative to unannealed samples. The 140˚C annealing temperature also yields the highest efficiency. These measurements provide an estimate of the mobility-lifetime product, a figure of merit for charge transport in organic bulk heterojunctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kietzke, T., Advances in OptoElectronics 2007, 115 (2007).Google Scholar
2. Halls, J. J. M., Walsh, C. A., Greenham, N. C., Marseglia, E. A., Friend, R. H., Moratti, S. C., and Holmes, A. B., Nature 376, 498500 (1995).Google Scholar
3. Hoppe, H. and Sariciftci, N. S., J. Mater. Res. 19, 1924 (2004).Google Scholar
4. Solarmer Energy Inc. press release, 27 July 2010.Google Scholar
5. Ma, W., Yang, C., Gong, X., Lee, K. and Heeger, A. J., Adv. Funct. Mater. 15, 1617 (2005).Google Scholar
6. Hou, J., Chen, H. Y., Zhang, S., Chen, R. I., Yang, Y., Wu, Y. and Li, G. J., Am. Chem. Soc. 131, 15586 (2009).Google Scholar
7. Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 2005).Google Scholar
8. Tumbleston, J. R., Ko, D. H., Samulski, E. T. and Lopez, R., Phys. Rev. B 82, 205325 (2010).Google Scholar
9. Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R. and Brédas, J., Chem. Rev. 107(4), 926952 (2007).Google Scholar
10. Mozer, A. J., and Sariciftci, N.S.. Chem. Phys. Lett. 389, 438442 (2004).Google Scholar
11. Choulis, S. A., Kim, Y., Nelson, J., Bradley, D.D.C., Giles, M., Shkunov, M., and McCulloch, I.. Appl. Phys. Lett. 85, 3890 (2004).Google Scholar
12. Tuladhar, S. M., Poplavskyy, D., Choulis, S.A., Durrant, J.R., Bradley, D.D.C., and Nelson, J.. Adv. Func. Mater. 15, 1171 (2005).Google Scholar
13. Tanase, C., Blom, P.W.M., and de Leeuw, D.M.. Phys. Rev. B 70, 193202 (2004).Google Scholar
14. Mihailetchi, V. D., Xie, H., de Boer, B., Koster, L. J. A., and Blom, P.W. M.. Adv. Funct. Mater. 16, 699708 (2006).Google Scholar
15. Popescu, L. M., Hof, P. V., Sieval, A. B., Jonkman, H. T. and Hummelen, J. C.. Appl. Phys. Lett. 89, 213507 (2006).Google Scholar
16. Chua, L. L., Zaumseil, J., Chang, J.-F., Ou, E.C.-W., Ho, P.K.-H., Sirringhaus, H., and Friend, R.H.. Nature 434,194 (2005).Google Scholar
17. Cho, S., Yuen, J., Kim, J. Y., Lee, K. and Heeger, A. J., Appl. Phys. Lett. 89, 153505 (2006).Google Scholar
18. Pensack, R. D., Banyas, K. M., and Asbury, J. B., J. Phys. Chem. C 114, 5344 (2010).Google Scholar
19. Montanari, I., Nogueira, A., Nelson, J., Durrant, J. R., Winder, C., Loi, M. A., Sariciftci, N. S., and Brabec, C., Appl. Phys. Lett. 81, 3001 (2002).Google Scholar
20. Garcia-Belmonte, G., Munar, A., Barea, E. M., Bisquert, J., Ugarte, I., and Pacios, R., Org. Electron. 9, 847 (2008).Google Scholar
21. Garcia-Belmonte, G., Boix, P. P., Bisquert, J., Sessolo, M., and Bolink, H. J., Sol. Energy Mater. Sol. Cells 94, 366 (2010).Google Scholar
22. Cowan, S. R., Street, R. A., Cho, S. and Heeger, A. J., Phys. Rev. B 83, 035205 (2011).Google Scholar
23. Li, K., Shen, Y., Majumdar, N., Hu, C., Gupta, M. C. and Campbell, J.C., J. Appl. Phys. 108, 084511 (2010).Google Scholar
24. Yang, X., Loos, J., Veenstra, S. C., Verhees, W. J. H., Wienk, M. M., Kroon, J. M., Michels, M. A. J., Janssen, R. A. J., Nano Lett. 5, 579 (2005).Google Scholar
25. Street, R. A., Schoendorf, M., Roy, A., and Lee, J. H., Phys. Rev. B 81, 205307 (2010).Google Scholar
26. Deibel, C. and Dyakonov, V., Rep. Prog. Phys. 73 096401 (2010).Google Scholar
27. Tzabari, L. and Tessler, N., J. Appl. Phys. 109, 064501 (2011).Google Scholar