Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T03:59:15.605Z Has data issue: false hasContentIssue false

Thermal and in vitro evaluation of a composite material pHEMA/Chitosan/Hydroxyapatite

Published online by Cambridge University Press:  16 March 2015

Areli.M. Salgado-Delgado
Affiliation:
División de Estudios de Posgrado e Investigación/Departamento de Ing. Química y Bioquímica, Instituto Tecnológico de Zacatepec, Calzada Tecnológico No. 27, Zacatepec, Morelos, C.P. 62780, México
Zully Vargas-Galarza
Affiliation:
División de Estudios de Posgrado e Investigación/Departamento de Ing. Química y Bioquímica, Instituto Tecnológico de Zacatepec, Calzada Tecnológico No. 27, Zacatepec, Morelos, C.P. 62780, México
René Salgado-Delgado
Affiliation:
División de Estudios de Posgrado e Investigación/Departamento de Ing. Química y Bioquímica, Instituto Tecnológico de Zacatepec, Calzada Tecnológico No. 27, Zacatepec, Morelos, C.P. 62780, México
Efraín Rubio-Rosas
Affiliation:
Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla, Puebla, C. P. 72570, México.
Edgar García-Hernández
Affiliation:
División de Estudios de Posgrado e Investigación/Departamento de Ing. Química y Bioquímica, Instituto Tecnológico de Zacatepec, Calzada Tecnológico No. 27, Zacatepec, Morelos, C.P. 62780, México
Wendy. N. Hernández-Díaz
Affiliation:
División de Estudios de Posgrado e Investigación/Departamento de Ing. Química y Bioquímica, Instituto Tecnológico de Zacatepec, Calzada Tecnológico No. 27, Zacatepec, Morelos, C.P. 62780, México
Get access

Abstract

Bioactive materials based on polymer/hydroxyapatite are currently being extensively investigated as materials for promotion of bone tissue regeneration and reconstruction [1]. In this work, a material interpenetrating based on poly 2-hydroxyethyl methacrylate (pHEMA), Chitosan and hydroxyapatite (HA) was prepared following the methodology of the foaming gas Damla Çetin [2], generating an interpenetrated network with the chitosan filled with hydroxyapatite. The materials were evaluated by thermal gravimetric analysis (TGA) and in vitro bioactivity [3] (SBF) and characterized by using scanning electron microscopy (SEM). The TGA studies suggested that there was not existence of possible interactions between polymers and HA but there is a thermal stability increase in the HA content. Meanwhile, SBF and its characterization by SEM, was found that the materials are bioactives as indicated by the formation of a bone-like apatite layer after immersion in simulated body fluid, indicating the potential of this material for use in bone tissue engineering.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pielichowska, Kinga and Blazewicz, Stanislaw (2010) Bioactive Polymer/Hydroxyapatite (Nano)composites for Bone Tissue Regeneration. Advances in Polymer Science 232: 97207 CrossRefGoogle Scholar
Damla Çetin, A. Kahraman, Sera and Gümüşderelioğlu, Menemşe (2011) Novel Scaffolds Based on Poly(2-hydroxyethyl methacrylate) Superporous Hydrogels for Bone Tissue Engineering. Journal of Biomaterials Science 22, 11571178 Google Scholar
Kokubo, Tadashi and Takadama, Hiroaki. (2006) How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27, 29072915 CrossRefGoogle ScholarPubMed
Huang, Jijun, Zhao, Dacheng, Dangaria, Smit J., Luan, Xianghong, Diekwisch, Thomas G.H., Jiang, Guoqing, Saiz, Eduardo, Liu, Gao and Tomsia, Antoni P. (2013) Combinatorial design of hydrolytically degradable, bone-like biocomposites based on PHEMA and hydroxyapatite. Polymer 54, 909919.CrossRefGoogle ScholarPubMed
Song, Jie, Saiz, Eduardo, Bertozzi, Carolyn R. (2003) Preparation of pHEMA–CP composites with high interfacial adhesion via template-driven mineralization. Journal of the European Ceramic Society 23, 29052919 CrossRefGoogle Scholar
Song, Jie, Xu, Jianwen, Filion, Tera, Saiz, Eduardo, Tomsia, Antoni P., Lian, Jane B., Stein, Gary S., Ayers, David C. and Bertozzi, Carolyn R. (2009) Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications. Journal of Biomedical Materials Research Part A, 89(4), 10981107 CrossRefGoogle ScholarPubMed
Filion, Tera M., Li, Xinning, Mason-Savas, April, Kreider, Jaclynn M., Goldstein, Steven A., Ayers, David C., Song, Jie (2011) Elastomeric Osteoconductive Synthetic Scaffolds with Acquired Osteoinductivity Expedite the Repair of Critical Femoral Defects in Rats. Tissue Engineering Part A 17, 3-4, 503511 CrossRefGoogle ScholarPubMed
Lj Tomić, Simonida, Mićić, Maja M., Dobić, Sava N., Filipović, Jovanka M., Suljovrujić, Edin H. (2010) Smart poly(2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiation Physics and Chemistry 79, 643649 CrossRefGoogle Scholar
Casimiro, M.H., Leal, J.P., Gil, M.H. (2005) Characterization of gamma irradiated chitosan/pHEMA membranes for biomedical purposes. Nuclear Instruments and Methods in Physics Research B 236, 482487 CrossRefGoogle Scholar