Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:27:04.607Z Has data issue: false hasContentIssue false

Theranostic Anticancer Agents Based on Internally Functionalized ORMOSIL Nanoparticles

Published online by Cambridge University Press:  17 February 2014

Nathan I. Walton
Affiliation:
Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
Zhe Gao
Affiliation:
Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
Ilya Zharov
Affiliation:
Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
Get access

Abstract

We prepared organically modified silica (ORMOSIL) nanoparticles with internal functional groups and mesoporosity, suitable for the incorporation of modalities for both MRI imaging and cancer treatment by neutron capture therapy using gadolinium-157 nuclei. These modalities were incorporated by preparing ORMOSIL nanoparticles with reactive functional groups throughout the nanoparticle body, followed by their conversion into the metal chelating moieties inside the nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cui, Z., Lockman, P. R., Atwood, C. S., Hsu, C.-H., Gupte, A., Allen, D. D., and Mumper, R. J., Eur. J Pharm. Biopharm. 59, 263 (2005).CrossRefGoogle Scholar
Yantasee, W., Warner, C. L., Sangvanich, T., Addleman, R. S., Carter, T. G., Wiacek, R. J., Fryxell, G. E., Timchalk, C., and Warner, M. G., Environ. Sci. Technol. 41, 5114 (2007).CrossRefGoogle Scholar
Li, Z., Zhang, Y., Shuter, B., and Idris, N. M., Langmuir 25, 12015 (2009).CrossRefGoogle ScholarPubMed
Feldmann, V., Engelmann, J., Gottschalk, S., and Mayer, H. A., J. Colloid Interface Sci. 366, 70 (2012).CrossRefGoogle Scholar
Taylor-Pashow, K. M. L., Rocca, J. D., and Lin, W., Nanomater. 2, 1 (2012).CrossRefGoogle Scholar
Hamid, A., Tripp, C., Bruce, A., and Bruce, M., Res. Chem. Intermed. 37, 791 (2011).CrossRefGoogle Scholar
Neouze, M.-A. and Schubert, U., Monatsh. Chem. 139, 183 (2008).CrossRefGoogle Scholar
Zhang, Y., Yu, X., Wang, X., Shan, W., Yang, P., and Tang, Y., Chem. Commun. 2882 (2004).CrossRefGoogle Scholar
Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., and Unger, K.K., Pure & Appl. Chem. 66, 1739 (1994).CrossRefGoogle Scholar
Macquarrie, D. J., Jackson, D. B., Mdoe, J. E. J., and Clark, J. H., New J. Chem. 23, 539 (1999).CrossRefGoogle Scholar
Walcarius, A. and Delacôte, C., Chem. Mater. 15, 4181 (2003).CrossRefGoogle Scholar
Rieter, W. J., Kim, J. S., Taylor, K. M. L., An, H., Lin, W., Tarrant, T., and Lin, W., Angew. Chem. Int. Ed. 46, 3680 (2007).CrossRefGoogle Scholar
Taylor, K. M. L., Kim, J. S., Rieter, W. J., An, H., and Lin, W., J. Am. Chem. Soc. 130, 2154 (2008).CrossRefGoogle Scholar
Soloway, A. H., Tjarks, W., Barnum, B. A., Rong, F.-G., Barth, R. F., Codogni, I. M., and Wilson, J. G., Chem. Rev. 98, 1515 (1998).Google ScholarPubMed
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotii, R. A., Rouquérol, J., and Siemieniewska, T., Pure & Appl. Chem. 57, 603 (1985).Google Scholar