Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:38:09.886Z Has data issue: false hasContentIssue false

Theory Of ZnO Varistors

Published online by Cambridge University Press:  15 February 2011

G.D. Mahan*
Affiliation:
Physics Department, Indiana University, Bloomington, Indiana 47405 U.S.A.
Get access

Extract

The theory of ZnO varistors has evolved along with the increasingly detailed experimental description [1-2]. The extreme nonlinearity in the currentvoltage curves naturally led the early investigators to suggest the well-known nonlinear mechanisms, such as space-charge limited currents or electron tunneling. Later experiments made these first proposals untenable [3-9]. Recently a second generation of theories has been proposed, with many different mechanisms suggested for the extreme nonlinearity [10-15]. Here we wish to review these different theories, and also the experiments which bear upon their validity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Levinson, L.M. and Philipp, H.R., J. Appl. Phys. 46, 1332 (1975);Google Scholar
Levinson, L.M. and Philipp, H.R., J. Appl. Phys. 47, 1117 and 3177 (1976).CrossRefGoogle Scholar
2. Philipp, H.R. and Levinson, L.M., J. Appl. Phys. 46, 3206 (1975);Google Scholar
Philipp, H.R. and Levinson, L.M., J. Appl. Phys. 48, 4372 (1977);CrossRefGoogle Scholar
Philipp, H.R. and Levinson, L.M., J. Appl. Phys. 50, 383 (1979).Google Scholar
3. Morris, W.G., J. Vac. Sci. Tech. 13, 926 (1976).Google Scholar
4. Clarke, D.R., J. Appl. Phys. 49, 2407 (1978).Google Scholar
5. Einzinger, R., Appl. Surf. Sci. 1, 329 (1978).CrossRefGoogle Scholar
6. Eda, K., J. Appl. Phys. 50, 4436 (1979).Google Scholar
7. Eda, K., Iga, A., and Matsuoka, M., J. Appl. Phys. 51, 2678 (1980).Google Scholar
8. Philipp, H.R. and Levinson, L.M., (to be published).Google Scholar
9. Chiang, Y.M., Kingery, W.D., and Levinson, L.M., (to be published).Google Scholar
10. Levine, J.D., CRC Crit. Rev. Solid State Science 5, 597 (1975).Google Scholar
11. Bernasconi, J., Klein, H.P., Knecht, B., and Strassler, S., J. Elec. Mat. 5, 473 (1976).Google Scholar
12. Emtage, P.R., J. Appl. Phys. 48, 4372 (1977).Google Scholar
13. Mahan, G.D., Levinson, L.M., and Philipp, H.R., Appl. Phys. Lett. 33, 830 (1978);Google Scholar
J. Appl. Phys. 50, 2799 (1979).Google Scholar
14. Hower, P.L. and Gupta, T.K., J. Appl. Phys. 50, 4847 (1979).Google Scholar
15. Vanadamme, L.K.J. and Brugman, J.C., J. Appl. Phys. 51, 4240 (1980).Google Scholar
16. Butcher, P.N., Hulbert, J.A., and Hulme, K.F., J. Phys. Chem. Solids 21, 320 (1961).Google Scholar
17. Conley, J.W. and Mahan, G.D., Phys. Rev. 161, 681 (1967).Google Scholar
18. Mahan, G.D. (unpublished).Google Scholar