Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T00:27:51.475Z Has data issue: false hasContentIssue false

Theory of the Negative Magnetoresistance in Magnetic Metallic Multilayers

Published online by Cambridge University Press:  03 September 2012

Randolph Q. Hood
Affiliation:
Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California, 94720, USA
L. M. Falicov
Affiliation:
Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California, 94720, USA
Get access

Abstract

The Boltzmann equation is solved for a system consisting of alternating ferromagnetic -normal metallic layers. The in-plane conductance of the film is calculated for two configurations: successive ferromagnetic layers aligned (i) parallel and (ii) antiparallel to each other. The results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by application of an external magnetic field. The calculation depends on (A) geometric parameters (the thicknesses of the layers); (B) intrinsic metal parameters (number of conduction electrons, Magnetization and effective masses in the layers); (C) bulk sample properties (conductivity relaxation times); and (D) interface scattering properties (diffuse scattering versus potential scattering at the interfaces). It is found that a large negative magnetoresistance requires, in general, considerable asymmetry in the interface scattering for the two spin orientations. All qualitative features of the experiments are reproduced. Quantitative agreement can be achieved with sensible values of the parameters. The effect can be conceptually explained based on considerations of phase-space availability for an electron of a given spin orientation as it travels through the multilayer sample in the various configurations and traverses the interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Thin Film Growth Techniques for Low-Dimensional Structures, edited by Farrow, R. F. C., P. Parkin, S. S., Dobson, P. J., Neave, J. H., and Arrott, A. S. (Plenum, New York, 1987).Google Scholar
[2] Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic, New York, 1985);Google Scholar
Metallic Superlattices: Artificially Structured Materials, edited by Shinjo, T. and Takada, T., Studies in Physical and Theoretical Chemistry Vol. 49 (Elsevier, Amsterdam, 1987);Google Scholar
Jin, B. Y. and Ketterson, J. B., Adv. Phys. 38, 189 (1989).Google Scholar
[3] Parkin, S. S. P., Phys. Rev. Lett. 67, 3598 (1991).Google Scholar
[4] Baibich, M. N., Broto, J. M., Fert, A., Nguyen Van Dau, F., Pétroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
[5] Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
[6] Binasch, G., Grünberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar
[7] Dieny, B., Speriosu, V. S., Parkin, S. S. P., Gurney, B. A., Wilhoit, D. R., and Mauri, D., Phys. Rev. B 43, 1297 (1991).Google Scholar
[8] Chaiken, A., Lubitz, P., Krebs, J. J., Prinz, G. A., and Harford, M. A., J. Appl. Phys. 70, 5864 (1991).Google Scholar
[9] Dieny, B., Speriosu, V. S., Metin, S., Parkin, S. S. P., Gurney, B. A., Baumgart, P., and Wilhoit, D. R., J. Appl. Phys. 69, 4774 (1991).Google Scholar
[10] Chaiken, A., Tritt, T. M., Gillespie, D. J., Krebs, J. J., Lubitz, P., Harford, M. Z., and Prinz, G. A., J. Appl. Phys. 69, 4798 (1991).Google Scholar
[11] Chaiken, A., Prinz, G. A., and Krebs, J. J., J. Appl. Phys. 67, 4892 (1990).Google Scholar
[12] Miyazaki, T., Yaoi, T., and Ishio, S., J. Magn. and Magn. Mat. 98, L7 (1991).Google Scholar
[13] Parkin, S. S. P., Li, Z. G., and Smith, D. J., Appl. Phys. Lett. 58, 2710 (1991).Google Scholar
[14] Pétroff, F., Barthélé, A., Mosca, D. H., Louis, D. K., Fert, A., Schroeder, P. A., Pratt, W. P. Jr, and Loloee, R., Phys. Rev. B 44, 5355 (1991).Google Scholar
[15] Pratt, W. P. Jr, Lee, S. F., Slaughter, J. M., Loloee, R., Schroeder, P. A., and Bass, J., Phys. Rev. Lett. 66, 3060 (1991).Google Scholar
[16] Fullerton, E. E., Kelly, D. M., Guimpel, J., Schuller, I. K., and Bruynseraede, Y., Phys. Rev. Lett. 68, 859 (1992).Google Scholar
[17] Baumgart, P., Gurney, B. A., Wilhoit, D. R., Nguyen, T., Dieny, B., and Speriosu, V., J. Appl. Phys. 69, 4792 (1991).Google Scholar
[18] Fert, A. and Campbell, I. A., J. Phys. F: Metal Phys. 6, 849 (1976);Google Scholar
Campbell, I. A. and Fert, A., in Ferromagnetic Materials, edited by Wohlfarth, E. P. (North-Holland, Amsterdam, 1982), Vol. 3, p. 769.Google Scholar
[19] Barthélé, A., Fert, A., Baibich, M. N., Hadjoudj, S., Pétroff, F., Etienne, P., Cabanel, R., Lequien, S., Nguyen Van Dau, F., and Creuzet, G., J. Appl. Phys. 67, 5908 (1990).Google Scholar
[20] Barnaś, J., Fuss, A., Camley, R. E., Grünberg, P., and Zinn, W., Phys. Rev. B 42, 8110 (1990).Google Scholar
[21] Camley, R. E. and Barnaś, J., Phys. Rev. Lett. 63, 664 (1989).Google Scholar
[22] Fuchs, K., Proc. Cambridge Philos. Soc. 34, 100 (1938).Google Scholar
[23] Sondheimer, E. H., Adv. Phys. 1, 1 (1952).Google Scholar
[24] Stoner, E. C., Proc. R. Soc. London A 165, 372 (1938).Google Scholar
[25] Hood, R. Q. and Falicov, L. M., Phys. Rev. B 46, 8287 (1992).Google Scholar
[26] The particular result (Δρ / ρ) = 0 is valid for S M = S M = 1 and for any combination of geometric and intrinsic metal parameters as long as τ iΣ = τΣ, i.e., the relaxation times for each spin is the same in all layers of the system.Google Scholar
[27] Soffer, S. B., J. Appl. Phys. 38, 1710 (1967).Google Scholar
[28] Bezák, V. and Krempaský, J., Czech. J. Phys. B 18, 1264 (1968).Google Scholar
[29] Bezák, V., Kedro, M., and Pevala, A., Thin Solid Films 23, 305, (1974).Google Scholar
[30] Penn, D. R., Hood, R. Q., and Falicov, L. M. (private communication).Google Scholar
[31] It should be noted that the channeling effect, per se, does not necessarily lead to a GMR, as can be seen from the case shown in figure 3 [(Δρ / ρ) = 0 for S M = S M = 1; the current distribution is nevertheless concentrated in the ferromagnetic layers]. The GMR appears when, in the parallel arrangement, there is channeling for only one spin and diffuse interface scattering for the other one. In that case, in the antiparallel arrangement, both spins partake in the diffuse scattering, and the long electron trajectories (and the channeling) are lost.Google Scholar