Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:12:21.621Z Has data issue: false hasContentIssue false

Theory of Pressure Effects on Silicon Nanocrystallites

Published online by Cambridge University Press:  15 February 2011

G. Allan
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, France, [email protected]
C. Delerue
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, France, [email protected]
M. Lannoo
Affiliation:
Institut d'Electronique et de Microélectronique du Nord, Département Institut Supérieur d'Electronique du Nord, BP 69, 59652 Villeneuve d'Ascq Cedex, France, [email protected]
Get access

Abstract

Pressure effects on silicon nanocrystallites are calculated using semi-empirical tight-binding and ab-initio local density calculations. Using the confinement model in porous silicon a red shift of the luminescence energy with increasing pressure is obtained. Quantum confinement in BC8 phase silicon nanocrystallites obtained after release of high pressure are also studied. It increases the cluster gap and also enhances the electron-hole radiative recombination rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Camassel, J., Massone, E., Lyapin, S., Allegre, J., Vincente, P., Foucaran, A., raymond, A., and Robert, J.L., in Proceeding of the 21st International Conference on the Physics of Semiconductors, edited by Jiang, Ping and Zhang, Hou-Zhi (World Scientific, Singapore, 1992), p. 1463.Google Scholar
2Zhou, W., Shen, H., Harvey, J.F., Lux, R.A., Dutta, M., Lu, F., Perry, C.H., Tsu, R., Kalhhoran, N.M., and Nawavar, F., Appl. Phys. Lett. 61, 1435 (1992).Google Scholar
3Sood, A.K., Jayaram, K., and Mathu, D.V.S., J. Appl. Phys. 72, 4963 (1992).Google Scholar
4Zhao, X.-S., Persans, P.D., Schroeder, J., and Wu, Y.-J., Mater. Res. Soc. Symp. 283, 127 (1993).Google Scholar
5Ookubo, N., Matsuda, Y., and Kuroda, N., Appl. Phys. Lett. 63, 346 (1993).Google Scholar
6Ryan, J.M., Wamsley, P.R., and Bray, K.L., Appl. Phys. Lett. 63, 2260 (1993).Google Scholar
7Cheong, H.M., Wickboldt, P., Pang, D., Chen, J.H., and Paul, W., Phys. Rev. B 52, R11577 (1995).Google Scholar
8Zeeman, J., Zigone, M., Martinez, G., and Rikken, G.L.J.A., J. Phys. Chem. Solids 56, 655 (1995).Google Scholar
9Cheong, H.M., Paul, W., Withrow, S.P., Zhu, J.G., Budai, J.D., White, C.W., and Hembree, D.M. Jr., Appl. Phys. Lett. 68, 87 (1996).Google Scholar
10Tolbert, B.S.H., Herhold, A.B., Brus, L.E., and Alivisatos, A.P., Phys. Rev. Lett. 76, 4384 (1996).Google Scholar
11Weiber, , Kim, C.K., Cardona, M., and Rodrigues, S., Solid State Comm. 17, 1021 (1975).Google Scholar
12Schmidt, E., and Vedam, K., Solid State Comm. 9, 1187 (1971).Google Scholar
13Yeh, C.-Y., Zhang, S.B., and Zunger, A., Appl. Phys. Lett. 64, 3545 (1994).Google Scholar
14 DMol User Guide, version 2.3.5. San Diego: Biosym Technologies, 1993.Google Scholar
15Delley, B., J. Chem. Phys. 92, 508 (1990).Google Scholar
16Vogl, P., Hjalmarson, H.P., and Dow, J.D., J. Phys. Chem. Sol. 44, 3651 (1983).Google Scholar
17Wentorf, R.H., and Kasper, J.S., Science 139, 338 (1963);Google Scholar
Kasper, J.S., and Richards, S.M., Acta Crystallogr. 17, 752 (1964).Google Scholar
18Joannopoulos, J.D., and Cohen, M.L., Phys. Rev. B 7, 2644 (1973)Google Scholar
19Yin, M.T., Phys. Rev. B 30, 1773 (1984).Google Scholar
20Fiorentini, V., and Baldereschi, A., Phys. Rev. B 51, 17196 (1995).Google Scholar
21Harrison, W.A., Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980).Google Scholar
22McSkimin, H.J., and Andreatch, P. Jr., J. Appl. Phys. 35, 2161 (1964).Google Scholar
23Allan, G., Delerue, C., and Lannoo, M.Surface/interface and Stress Effects in Electronic Material Nanostructures”, Prokeš, S.M., Wang, K.L., Cammarata, R.C., Christou, A. Eds. (Mat. Res. Soc. Proc. 405, Pittsburgh, PA, 1996) p. 235Google Scholar
24Allan, G., Delerue, C., and Lannoo, M., Phys. Rev. Lett. 76, 2961 (1996).Google Scholar
25Delerue, G, Lannoo, M., and Allan, G., Phys. Rev. Lett. 76, 3038 (1996).Google Scholar
26Proot, J.P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992);Google Scholar
Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993).Google Scholar
27Troullier, N., and Martins, J.L., Solid State Comm. 74, 613 (1990).Google Scholar
28 Plane_wave User Guide, version 3.0.0. San Diego: Biosym Technologies, 1995.Google Scholar
29Allan, G., Delerue, C., and Lannoo, M. (To be published).Google Scholar
30Dexter, D.L. in Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic Press, New York, 1958), Vol. 6, p. 360.Google Scholar
31Hybertsen, M.,, in Light Emission from Silicon, edited by Iyer, S.S., Canham, L.T., and Collins, R.T. (Materials Research Society, Pittsburgh, 1992), p. 179.Google Scholar