Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:39:48.502Z Has data issue: false hasContentIssue false

Theory of Nuclear Relaxation in Confining Systems. Application to Non Wetting Liquids in Porous Silica Glasses

Published online by Cambridge University Press:  15 February 2011

J.-P. Korb
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, 91128 Palaiseau, France
A. Delville
Affiliation:
Centre de Recherche sur la Matière Divisée, CNRS, 1b rue de la Férollerie, 45071 Orléans, Cedex 02, France
Shu Xu
Affiliation:
Material Research Laboratory and Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, USA
J. Jonas
Affiliation:
Material Research Laboratory and Department of Chemistry, School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, USA
Get access

Abstract

This work shows how the geometrical confinements enhances the nuclear relaxation of a non wetting liquid in a model porous systems. Application of the proposed theory is made to interpret the size and frequency dependences of the 1H relaxation of methylcyclohexane liquid in sol-gel porous silica glasses with narrow pore-size distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, G., Li, Y and Jonas, J., J. Chem. Phys. 95, 6892 (1991).Google Scholar
2. Korb, J.-P., Xu, Shu and Jonas, J., J. Chem. Phys. (to be published in J. Chem. Phys.).Google Scholar
3. Korb, J.-P., Winterhalter, M. and McConnell, H.M., J. Chem. Phys. 80, 1059 (1984)Google Scholar
4. Tabony, J. and Korb, J.-P., Mol. Phys. 56, 1281 (1985).Google Scholar
5. Chachaty, C., Korb, J. -P., van der Maarel, J. R.C., Bras, W., Quinn, P., Phys. Rev. B 44, 4778 (1991); C. Chachaty and J. -P. Korb, J.Phys. Chem. 95, 6058 (1991).Google Scholar
6. Lipsicas, M., Banavar, J. R. and Willemsen, J., Appl. Phys. Lett. 48, 1544 (1986).Google Scholar
7. D'Orazio, F., Bhattacharja, S., Halperin, W. and Gerhardt, R., Phys. Rev. Lett. 63, 43 (1989).Google Scholar
8. Cable, P.C., Klemperer, W.G. and Simon, C.A., MRS Symp. Proc. 180, “Better Ceramics Trough Chemistry”, IV, (Eds. Brinker, C. J., 1990), 29.Google Scholar