Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T08:16:42.043Z Has data issue: false hasContentIssue false

Theoretical Studies of Ni3Al and Nial with Impurities

Published online by Cambridge University Press:  26 February 2011

S. P. Chen
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A. F. Voter
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A. M. Boring
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. C. Albers
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. J. Hay
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Intermetallic compounds have been extensively studied because of their superior strength, low creep rate, and high melting point [1,2]. However, room temperature ductility for the L12 and B2 phases are a continuing problem. Both L12 Ni3Al [3,4] and B2 NiAl [5,6] exhibit an intergranular fracture mode. Understanding grain boundaries in these materials is of particular importance since intergranular fracture limits the applicability of these otherwise promising materials. In an effort to understand the fracture mechanism, we have used embedded atom potentials [7] to study the properties of Ni 3Al [8,9,10] and NiAl [11]. We also consider the effect of boron, sulfur, and nickel segregation on the strength of grain boundaries in Ni3Al and NiAl. Many of the results presented here appear in literature elsewhere [8,9,10,11].

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. High temperature Ordered Intermetallic Alloys, ed. by Koch, C. C., Liu, C. T., and Stoloff, N. S., Mat. Res. Soc. Proc. vol.39, Materials Research Society, Pittsburgh, PA (1985).Google Scholar
2. High temperature Ordered Intermetallic Alloys II, ed. by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., Mat. Res. Soc. Proc. vol.81, Materials Research Society, Pittsburgh, PA (1987).Google Scholar
3. Aoki, K. and Izumi, O., J. Japan Inst. Metals, 43, 1190 (1979).Google Scholar
4. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213 (1985).Google Scholar
5. Rozner, A. G. and Wasilewski, R. J., Journal of Institute of Metals, 94, 169 (1966).Google Scholar
6. Hahn, K. H. and Vedula, K., preprint 1988; K. Vedula and J. R. Stephens, p. 381 in Ref. 2.Google Scholar
7. Voter, A. F. and Chen, S. P., Mat. Res. Soc. Proc., 82, 175 (1987).CrossRefGoogle Scholar
8. Chen, S. P., Voter, A. F., and Srolovitz, D. J., Scripta Metall. 20, 1389 (1986).Google Scholar
9. Chen, S. P., Voter, A. F., and Srolovitz, D. J., J. Mat. Res.Google Scholar
10. Chen, S. P., Voter, A. F., Albers, R. C., Boring, A. M., and Hay, P. J., Scripta Metall. February, (1989).Google Scholar
11. Chen, S. P. and Voter, A. F., submitted to Scripta Metall.Google Scholar
12. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983); Phy. Rev. B. 29, 6443 (1984).Google Scholar
13. Chen, S. P., Voter, A. F., Albers, R. C., Boring, A. M., and Hay, P. J., submitted to J. Mat. Res. (1989).Google Scholar
14. Chen, S. P., Voter, A. F., Boring, A. M. and Albers, R. C., to be published.Google Scholar
15. Chen, S. P., Voter, A. F., and Srolovitz, D. J., Mat. Res. Soc. Proc. vol.81, 45 (1987).CrossRefGoogle Scholar
16. McMahon, C. J. Jr. and Vitek, V., Acta Metall. 27, 507 (1979); J. E. Hack, D. J. Srolovitz, and S. P. Chen, Scripta Metall. 20, 1699 (1986); J. E. Hack, S. P. Chen, and D. J. Srolovitz, Acta Metall., in press.Google Scholar
17. Sutton, A. P. and Vitek, V., Phil. Trans. Roy. Soc. (Lond.) A309, 1 (1983).Google Scholar
18. Wang, G. J., Sutton, A. P., and Vitek, V., Acta Metall. 32, 1093 (1984).Google Scholar
19. Sieloff, D. D., Brenner, S. S., and Burke, M. G., Mat. Res. Soc. Proc. vol.81, p. 87 (1987).Google Scholar
20. Vitek, V., Chen, S. P., Voter, A. F., Kruisman, J. J., and DeHosson, J. Th. M., in “Grain Boundary Chemistry and Intergranular Fracture,” ed. by Was, G. S., Trans. Tech. Publications (1989).Google Scholar
21. Chen, S. P., Voter, A. F., and Srolovitz, D. J., Phys. Rev. Lett. 57, 1308 (1986); Mat. Res. Soc. Proc., 82, 515 (1987).Google Scholar
22. White, C. L., Padgett, R. A., Liu, C. T., and Yalisov, S. M., Scripta Metall., 18, 1417 (1985).Google Scholar
23. White, C. L. and Stein, D. F., Metall. Trans. A, 9A, 13 (1978).Google Scholar