Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:45:12.675Z Has data issue: false hasContentIssue false

Theoretical Studies of Gravitational Effects in Chemical Vapor Deposition

Published online by Cambridge University Press:  26 February 2011

Charter D. Stinespring
Affiliation:
Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
Charles E. Kolb
Affiliation:
Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821
Kurt D. Annen
Affiliation:
Aerodyne Products Corp., 76 Treble Cove Road, Billerica, MA 01862
Get access

Abstract

Chemical Vapor Deposition (CVD) processes are generally carried out under large temperature gradients. These gradients, temperature dependent fluid properties, and the earth's gravitational field give rise to buoyancy-driven free convective fluid flow which augments heat and mass transport in the CVD reactor. Under certain conditions, this free convective flow may alter the gas phase chemistry associated with the deposition process. In order to understand these free convective effects and their implications for the deposition process, a computational model describing the combined effects of fluid mechanics and chemistry has been developed. This model uses a coupled chemical equilibrium/mass transport code in conjunction with a 2-D elliptic fluid dynamics code to describe gas phase species profiles and deposition rates. This paper briefly describes the development of the model, its use, and the results of typical calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Naumann, R.J. and Herring, H.W., Material Processing In Space, NASA SOP-443, NASA, Washington, DC (1980).Google Scholar
2. Napolitane, L.G., Science 225, 197 (1984).Google Scholar
3. Jensen, K.F., in Proc. of Ninth International Conference On Chemical Vapor Deposition, McD. Robinson, Cullen, G.W., van der Brekel, C.H. J., Blocher, J.M., Rai-Choudhury, P., pp. 3–20 (1984).Google Scholar
4. Houtman, C., Moffat, H., and Jensen, K.F., Invited Paper, Fifth European Conference on CVD (1985).Google Scholar
5. Stinespring, C.D., Annen, K.D., Spear, K., “Experimental and Theoretical Analysis of Chemical Vapor Deposition Processes with the Aid of Gravity Effects,” Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821, ARI-RR-550 (1986).Google Scholar
6. Dudukovic, M.P., “Reactor Models for CVD of Silicon,” Jet Propulsion Laboratory Report (1982).Google Scholar
7. Eversteijn, F.C., Severin, P.J.W., van der Breker, C.H.J. and Peck, H.L., J. Electrochem. Soc. 117, 925 (1970).Google Scholar
8. Eversteijn, F.C. and Peck, H.L., Philips Res. Reports 25, 472 (1970).Google Scholar
9. Ban, V.S. and Gilbert, S.L., J. Crystal Growth 31, 284 (1975).Google Scholar
10. Ban, V.S., J.Crystal Growth 45, 97 (1978)Google Scholar
11. Coltrin, M.E., Kee, R.J., and Miller, J.A., J. Electrochem. Soc. 131, 425 (1984).Google Scholar
12. Coltrin, M.E., Kee, R.J., and Miller, J.A., J. Electrochem. Soc. 133, 1206 (1986).Google Scholar
13. Takahashi, R., Sugawara, K., Nakazama, Y., and Koga, Y., in Chemical Vapor Deposition (Second Int. Conf.), eds. Blocher, J.M. and Withers, J.C., Electro. Chem. Soc., New York (1970).Google Scholar
14. Sugawara, K., Takahashi, R., Tochikubo, H., and Koga, Y., in Chemical Vapor Deposition (Second Int. Conf.), eds Blocher, J.M. and Withers, J.C., Electrochem. Soc., New York (1970).Google Scholar
15. Takahashi, R., Koga, Y., and Sugawara, K., J. Electrochem. Soc. 119, 1406 (1972).Google Scholar
16. Giling, L.J., J. Electrochem. Soc 129, 634 (1982).Google Scholar
17. Kamotani, Y. and Ostrach, S., J. Heat Transfer, Trans. ASME 98, 62 (1976).Google Scholar
18. Berkman, S., Ban, V.S. and Goldsmith, N., in Heteroepitaxial Semiconductors for Electronic Devices, eds. Cullen, G. W. and Wang, C. C., Springer, NY (1977).Google Scholar
19. Grove, A.S., Ind. Eng. Chem. 58, 48 (1966).Google Scholar
20. Hanzawa, T., and Ito, U., Chem. Eng. Japan 34, 1333 (1970).Google Scholar
21. Newell, P.H. and Bergles, A.E., J. Heat Transfer, Trans. ASME 92, 83 (1970).Google Scholar
22. Wahl, G., Thin Solid Films 40, 13 (1977).Google Scholar
23. Grosman, A.O., Pun, W.M., Runchal, W.M., Spalding, D.B. and Wolfshtein, M., Heat and Mass Transfer in Recirculating Flows, Academic Press, London (1973).Google Scholar
24. Wahl, G. in Proc. 4th European CVD Conf., eds Bloem, J., Verspui, G., Wolff, L.R., Electrochem. Soc. (1983).Google Scholar
25. Farrow, R.F.C., J. Electrochem. Soc. 121, 898 (1974).Google Scholar
26. Private Communication, Buss, R., Sandia National Laboratory.Google Scholar