Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:36:42.106Z Has data issue: false hasContentIssue false

Theoretical Studies of Diamond Surface Chemistry and Diamond-Metal Interfaces

Published online by Cambridge University Press:  25 February 2011

W. E. Pickett
Affiliation:
Complex Systems Theory Branch, Code 4692, Naval Research Laboratory, Washington Dc 20375–5000
M. R. Pederson
Affiliation:
Complex Systems Theory Branch, Code 4692, Naval Research Laboratory, Washington Dc 20375–5000
K. A. Jackson
Affiliation:
Department of Physics, Central Michigan University, Mt. Pleasant MI 48859
S. C. Erwin
Affiliation:
Department of Physics, University of Pennsylvania, Philadelphia PA 19104
Get access

Abstract

Advances in diamond film growth have prompted us to study the interfaces involved in this process: the interface with the substrate, and the growth interface with the ambient hydrocarbon vapor. Carbon chemistry lies at the heart of the properties of both interfaces, and much of the relevant chemistry is not well understood. We report here the energies involved in some idealized chemical processes that may be important in the growth process. Results (Schottky barriers, interface energies) for diamond/metal interfaces are also reported, and the especially unusual diamond/nickel results we have recently obtained are discussed in some detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Collections of papers are available in J. Mater. Res. 11, (1990);Google Scholar
Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandaap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimore, N. (Materials Research Society, Pittsburgh, 1990);Google Scholar
Technology Update on Diamond Films, edited by Chang, R. P. H., Nelson, D., and Hiraki, A. (Materials Research Society, Pittsburgh, 1989).Google Scholar
[2] See, for example, Pickett, W. E. and Wang, C. S., Phys. Rev. B30, 4719 (1984).Google Scholar
[3] Papaconstantopoulos, D. A., Handbook of the Band Structure of Elemental Solids (Plenum, New York, 1986), pp. 227233.Google Scholar
[4] Jones, R.O. and Gunnarsson, O., Rev. Mod. Phys. 61, 689 (1989).Google Scholar
[5] Erwin, S. C. and Pickett, W. E., Phys. Rev. B41, 9756 (1990).Google Scholar
[6] Pederson, M. R., Jackson, K. A., and Pickett, W. E., Phys. Rev. B44., 3891 (1991).Google Scholar
[7] Erwin, S. C. and Pickett, W. E., Surf. Coatings Technol. 47, 487 (1991).Google Scholar
[8] Pederson, M. R., Jackson, K. A., and Pickett, W. E., in Proceedings of the 2nd International Conference on the New Diamond Science and Technology, edited by Messier, R. and Glass, J., MRS International Conference Proceedings (Materials Research Society, Pittsburgh, 1991).Google Scholar
[9] Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 180, 5780 (1986); Jpn. J. Appl. Phys. 26, L527 (1987).Google Scholar
[10] Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988);Google Scholar
Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 6379 (1988).Google Scholar
[11] Harris, S. J., Appl. Phys. Lett. 56, 2296 (1990);Google Scholar
Harris, S. J., Belton, D. N., and Blint, R. J., New Diamond Science and Technology, edited by Messier, R. and Glass, J. (Materials Research Society, Pittsburgh, 1991), pp. 277290.Google Scholar
[12] Yarbrough, W., J. Vac. Sci. Technol. A 9, 1145 (1991);Google Scholar
Yarbrough, W. A., Diamond Optics IV, edited by Holly, S. and Feldman, A., (SPIE, 1991).Google Scholar
[13] Walch, S. P., J. Chem. Phys. 72, 4932 (1980);CrossRefGoogle Scholar
Kurylo, M. J., Hollinden, G. A., and Timmons, R. B., J. Chem. Phys. 52., 1773 (1070).Google Scholar
[14] Langreth, D. C. and Mehl, M. J., Phys. Rev. B28, 1809 (1983).CrossRefGoogle Scholar
[15] Perdew, J. P. and Wang, Y., Phys. Rev. B33, 8800 (1986);Google Scholar
Perdew, J. P., Phys. Rev. B33., 8822 (1986), (E) B34, 7406 (1986).Google Scholar
[16] Perdew, J. P., in Proceedings of the 21st Annual International Symposium “Electronic Structure of Solids,” edited by Ziesche, P. (Nova Science, in press); Phys. Rev. B (in press).Google Scholar
[17] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B (in press).Google Scholar
[18] Erwin, S. C. and Pickett, W. E., Superlattices and Microstructures 2, 335 (1990).Google Scholar
[19] Erwin, S. C. and Pickett, W. E., submitted to Solid State Commun.Google Scholar
[20] Lee, Y. H., Bachmann, K. J., Glass, J. T., LeGrice, Y. M., and Nemanich, R. J., Appl. Phys. Lett. 57, 1916 (1990).CrossRefGoogle Scholar
[21] Belton, D. N. and Schmeig, , J. Appl. Phys. 66, 4224 (1989).Google Scholar
[21] Rudder, R. A. et al., in Diamond Optics, edited by Feldman, A. and Holly, S. (SPIE, 1989).Google Scholar