Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:35:46.092Z Has data issue: false hasContentIssue false

Theoretical Prediction of the Donor/Acceptor Site-Dependence on First Hyperpolarizabilities in Conjugated Systems Containing Azomethine Bonds

Published online by Cambridge University Press:  01 January 1992

Azuma Matsuura
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Tomoaki Hayano
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Get access

Abstract

We calculated frequency-dependent first hyperpolarizabilities for electro-optic Pockels effect, β(ω; 0, ω), in π-conjugated molecules containing azomethine bonds using the CNDO/S-CI sum-over-states method. First, we examined the dependence of static β on formulas for the two-center Coulomb integral, γAB. The choice of the γAB formula has little effect on the relative β value, but a considerable effect on the absolute value. Then we investigated the relationship between the magnitude of β(ω; 0, ω) and the donor/acceptor substitution sites. We found that the molecule with no donors or acceptors can be divided into donor and acceptor regions whose existence causes the donor/acceptor site-dependence of β(ω; 0, ω).

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iijima, M., Takahashi, Y., Fukuda, E., Nikkei New Materials, December 11, 93 (1989), (in Japanese).Google Scholar
2 Yoshimura, T., Tatsuura, S., and Sotoyama, W., Appl. Phys. Lett., 59, 482 (1991).Google Scholar
3 Yoshimura, T., Phys. Rev. B, 40, 6292 (1989).Google Scholar
4 Tsunekawa, T., Gotoh, T., and Iwamoto, M., Chem. Phys. Lett., 166, 353 (1990).Google Scholar
5 Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P., Am, J.. Chem. Soc., 107, 3902 (1985).Google Scholar
6 Stewart, J. J. P., Quantum Chemistry Program Exchange, #581.Google Scholar
7 Pugh, D. and Morley, J. O., in Nonlinear Optical Properties of Organic Molecules and Crystals, edited by Chemla, D. S. and Zyss, J. (Academic, New York, 1987), Vol. 1. pp. 201206.Google Scholar
8 Morrell, J. A. and Albrecht, A. C., Chem. Phys. Lett., 64, 46 (1979).Google Scholar
9 Ward, J. F., Rev. Mod. Phys., 37, 1 (1965).Google Scholar
10 Del Bene, J. and Jaffe, H. H., J. Chem. Phys., 48, 1807, 4050 (1968).Google Scholar
11 Matsuura, A. and Hayano, T., Fujitsu Sci. Tech. J., 28, 402 (1992).Google Scholar
12 Pariser, R. and Parr, R. G., J. Chem. Phys., 21, 767 (1953).Google Scholar
13 Nishimoto, K. and Mataga, N., Z. Phys. Chem., 13, 140 (1957).Google Scholar
14 Nishimoto, K., Proceedings of Domestic Molecular Structure Conference in Fukuoka, 2A07, 186 (1990), (in Japanese).Google Scholar
15 Ohno, K., Theoret. Chim. Acta(Berl.), 2, 219 (1964).Google Scholar
16 Fukui, K., Yonezawa, T., and Shingu, H., J. Chem. Phys., 20, 722 (1952); Fukui, K., Yonezawa, T., Nagata, C., and Shingu, H., ibid., 22, 1433 (1954).Google Scholar