Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T03:26:26.338Z Has data issue: false hasContentIssue false

Theoretical Modeling and Improved Thermoelectric Properties in (111) and (001) Oriented PbTe/Pb1-xEuxTe MQWs

Published online by Cambridge University Press:  10 February 2011

T. Koga
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
S. B. Cronin
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
T. C. Harman
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173
X. Sun
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
M. S. Dresselhaus
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Theoretical modeling of ZT of (111) and (001) oriented PbTe/Pb1-xEuxTe multiple-quantum-wells (MQWs) is carried out assuming parabolic energy bands and the constant relaxation time approximation. The model calculation for the (111) oriented MQWs is compared with the recently obtained experimental results for the Seebeck coefficient and the Hall carrier concentration. The thermoelectric properties for (001) oriented PbTe MQWs are expected to have even better thermoelectric properties than the (111) oriented PbTe MQWs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hicks, L. D. and Dresselhaus, M. S.. In Semiconductor Hetero structures for Photonic and Electronic Applications: MRS Symposia Proceedings, Boston, volume 281, edited by Tu, C. W., Houghton, D. C., and Tung, R. T., page 821, Materials Research Society Press, Pittsburgh, PA, 1993.Google Scholar
[2] Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).Google Scholar
[3] Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 16631 (1993).Google Scholar
[4] Hicks, L. D., Hárman, M. S., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 53, R10493 (1996).Google Scholar
[5] Harman, T. C., Spears, D. L., and Manfra, M. J., J. Electron. Mater. 25, 1121 (1996).Google Scholar
[6] Hicks, L. D., Harman, T. C., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 53, R10493R10496 (1996).Google Scholar
[7] Hicks, Lyndon D.. The effect of quantum-well superlattices on the thermo-electric figure of merit. PhD thesis, Massachusetts Institute of Technology, June 1996. Department of Physics.Google Scholar
[8] Sofo, J. O. and Mahan, G. D., Appl. Phys. Lett. 65, 2690 (1994).Google Scholar
[9] Broido, D. A. and Reinecke, T. L., Appl. Phys. Lett. 67, 100 (1995).Google Scholar
[10] Broido, D. A. and Reinecke, T. L., Appl. Phys. Lett. 67, 1170 (1995).Google Scholar
[11] Lin-Chung, P. J. and Reinecke, T. L., Phys. Rev. B 51, 13244 (1995).Google Scholar
[12] Broido, D. L. and Reinecke, T. L., Phys. Rev. B 51, 13797 (1995).Google Scholar
[13] Broido, D. A. and Reinecke, T. L., Appl. Phys. Lett. 70, 2834 (1997).Google Scholar
[14] Yuan, Shu, Springholz, G., Bauer, G., and Kriechbaum, M., Phys. Rev. B 49, 5476 (1994).Google Scholar
[15] Ravich, Y. I., Efimova, B. A., and Simirnov, I. A., Semiconducting Lead Chalcogenides (Plenum Press, New York, 1970). chapter 3, 4 and 6.Google Scholar
[16] Ashcroft, N. W. and Mermin, N. D., Solid State Physics (W. B. Saunders Company, Philadelphia, 1976). chapter 12 and 13.Google Scholar
[17] Seeger, K., Semiconductor Physics - An Introduction - (Springer-Verlag, Berlin, 1985). chapter 4.Google Scholar
[18] Drabble, J. R. and Goldsmid, H. J., 1961). page 180.Google Scholar