Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T01:14:38.804Z Has data issue: false hasContentIssue false

Theoretical Methods for Calculating Electronic Properties of Semiconductor Superlattices

Published online by Cambridge University Press:  28 February 2011

JOEL N. SCHULMAN*
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
Get access

Abstract

A variety of theoretical models have been used to calculate the electronic properties of semiconductor superlattices. The methods vary in their ease of implementation, number of empirical parameters, and ability to incorporate physical effects. There is no “best” method; the choice of model is made on the basis of the desired property under investigation, such as subband energy levels, energy band dispersion and effective mass, strain effects, or optical spectra. The strength and limitations of the Kronig- Penney, envelope function, and tight-binding models will be reviewed, including one-, two-, and multi-band versions. The relationship of superlattice to bulk band structure, and the issue of dispersion in the growth and in-plane directions will be illustrated with the examples of the CaAs-GaAlAs and HgTe-CdTe superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schulman, J.N. and McGill, T.C., in Synthetic Modulated Structures, edited by Chang, L.L. and B.C. Giessen (Academic Press, New York, 1985), p. 77.Google Scholar
2.See, for example, Merzbacher, E., Quantum Mechanics, 2nd ed. (John Wiley & Sons, New York, 1970), pp. 100-105.Google Scholar
3. Bastard, G., Phys. Rev. B25, 7584 (1982).CrossRefGoogle Scholar
4. Sai-Halasz, G.A., Tsu, R., and Esaki, L., Appl. Phys. Lett. 30, 651 (1977).Google Scholar
5. White, S.R. and Sham, L.J., Phys. Rev. Lett. 47, 879 (1981).CrossRefGoogle Scholar
6. Bastard, G., Phys. Rev. B24, 5693 (1981).Google Scholar
7. Schulman, J.N. and Y.-C. ?-hang, Phys. Rev. B24, 4445 (1981).Google Scholar
8. Schulman, J.N. and Chang, Y.-C., Phys. Rev. B31, 2056 (1985).Google Scholar
9. Chang, Y.-C., Schulman, J.N., Bastard, G., Ti-ldner, Y., and Voos, M., Phys. Rev. B31, 2557 (1985).Google Scholar
10. Sai-Halasz, G.A., Esaki, L., and Harrison, W.A., Phys. Rev. B18, 2812 (1978).Google Scholar
11. Ivanov, I. and Pollmann, J., Solid State Commun. 32, 869 (1979).Google Scholar
12. Schulman, J.N. and Chang, Y.-C., Appl. Phys. Lett. 46, 571 (1985).Google Scholar
13.Y.-C. Chang and Schulman, J.N., Phys. Rev. B31, 2069 (1985).Google Scholar
14. Sanders, G.D. and Chang, Y.-C., Phys. Rev. B31, 6892 (1985).CrossRefGoogle Scholar
15. Altarelli, M., Phys. Rev. 828, 842 (1983).Google Scholar
16. Mailhiot, C., McGill, T.C., and Smith, D.L., J. Vac. Sci. Technol. 832, 371 (1984).Google Scholar
17. Moriarty, J.A. and Krishnamurthy, S., J. Appl. Phys. 54, 1892 (1983); Krishnamurthy, S. and Moriarty, J.A., Superlattices and Microstructures 1, 209 (1985).Google Scholar
18. Marsh, A.C. and Inkson, J.C., J. Phys. C17, 6561 (1984); Solid State Commun. 52, 1037 (1984).Google Scholar
19.Y.-C. Chang and Schulman, J.N., Phys. Rev. B25, 3975 (1982).Google Scholar
20.M.F.H. Schuurmans and G.W. 't Hooft, Phys. Rev. B31, 8041 (1985).Google Scholar
21. Schulman, J.N. and Chang, Y.-C., Phys. Rev. B, to be published.Google Scholar
22. Lassnig, R., Phys. Rev. B31, 8076 (1985).Google Scholar
23. Fasolino, A. and Altarelli, M., in Two Dimensional Systems, Heterostructures and Superlattices, edited by Bauer, G., Kuchar, F., and H. Heinrich (Springer, Berlin, 1984), p.176.Google Scholar
24. Ninno, D., Wong, K.B., Gell, M.A., and Jaros, M., Phys. Rev. B32, 2700 (1985).Google Scholar