Article contents
Theoretical Investigation of Fluorinated and Hydrocenated Diamond <100> Filks
Published online by Cambridge University Press: 25 February 2011
Abstract
To investigate some of the fundamental differences between halogen and hydrogen assisted diamond film growth we have performed several calculations related to the <100> diamond surface. The models used in these investigations include ten-layer periodic slabs of free standing fluorinated diamond films as well as isolated clusters [C21F6H20]. For purposes of comparison, we have also performed calculations on models of the hydrogenated <100> surface. The calculations are performed within the density-functional framework using LCAO and LAPW computational methods. We have considered two geometries of a monofluoride surface. The first surface, best described as an ideal l×l surface with a monolayer of ionically bonded fluorines, exhibits a metallic density of states in contrast to a 2×l reconstructed surface with chemically bonded fluorines that is found to be insulating. We compare theoretical carbon core level shifts with experimental values and discuss growth models based on these surface calculations.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
- 2
- Cited by