Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T17:01:08.905Z Has data issue: false hasContentIssue false

Theoretical and Experimental Studies of Third-Order Nonlinear Optical Susceptibilities of New p-N,N'-Diamethylaniline Tetrathiafulvalene Derivatives

Published online by Cambridge University Press:  21 March 2011

B. Sahraoui
Affiliation:
Laboratoire POMA, UMR CNRS 6136, Universite d'Angers, France
K.J. Pluciński
Affiliation:
Military University of Technology, 2 Kaliski Str., 00-908 Warsaw, Poland
M. Makowaska-Janusik
Affiliation:
Institute of Physics WSP, Al, Amii Krajowej 13/15, 42217 Czestochowa, Poland
I. V. Kityk
Affiliation:
Institute of Physics WSP, Al, Amii Krajowej 13/15, 42217 Czestochowa, Poland
M. Salle
Affiliation:
Laboratoire IMMO, UMR CNRS 6501, Universite d'Angers, France
A. Gorgues
Affiliation:
Institute of Physics WSP, Al, Amii Krajowej 13/15, 42217 Czestochowa, Poland
Get access

Abstract

A study was made of third-order nonlinear optical susceptibilities of new tetrathiafulvalene (TTF) derivatives, using the degenerate four wave mixing (DFWM) method, as well as complex quantum chemical calculations. To understand the physical nature of the optical nonlinearities, we separated their electronic and nuclear contributions. We found that the electronic contribution to these nonlinearities predominated. Our investigations suggest that TTF may be a highly promising material for nonlinear optics (NLO).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, J. Y. and Kim, K. S., J.Chem.Phys. 107, 6515 (1997).Google Scholar
2. Marder, S. R., Cheng, L.T., Tiemou, B. G., Friedle, A. C., and Blaudchord-Desce, M., Science 263, 511 (1994).Google Scholar
3. Nunzi, J. M., Fiorini, C., Etile, A. C., and Kajzar, F., Appl. Optics 7, 141 (1998).Google Scholar
4. Kityk, I. V., Sahraoui, B., Nguyen, P. X., Rivoire, G., and Kasperczyk, J., Int.J.Nonlinear Optics 18, 13 (1997).Google Scholar
5. Sahraoui, B., Optical Communic. Reports 3, 46 (2000).Google Scholar
6. Xiao, G. and Chin, J., Opt.Meas. 15, 132 (2000).Google Scholar
7. Frisch, M.J., Trucks, G.W., Schlegel, H.W., Gill, P.M.W., Johnson, B.G., Wong, M.W., Foresman, J.B., Robb, M.A., Head-Gordon, M., Replogle, E.S., Gomperts, R., Andres, J.L., Raghvachari, K., Binkley, J.S., Gonzales, C., Martin, R.L., Fox, D.J., Defrees, D.J., Baker, J., Steart, J.J.P., and Pople, J.A., GAUSSIAN 94, Rev. C3, Pittsburg, Gaussian Inc. (1994).Google Scholar
8. Pople, J. A. and Beveridge, D. L., Approximate Molecular Orbital Theory, (Mc-Graw Hill, 1970).Google Scholar
9. Fletcher, R., Comput. J. 13, 317 (1970).Google Scholar
10. Goldfarb, D., Math. Comput. 24, 23 (1970).Google Scholar
11. Becke, A. D., J.Chem.Phys. 98, 1372 (1993).Google Scholar